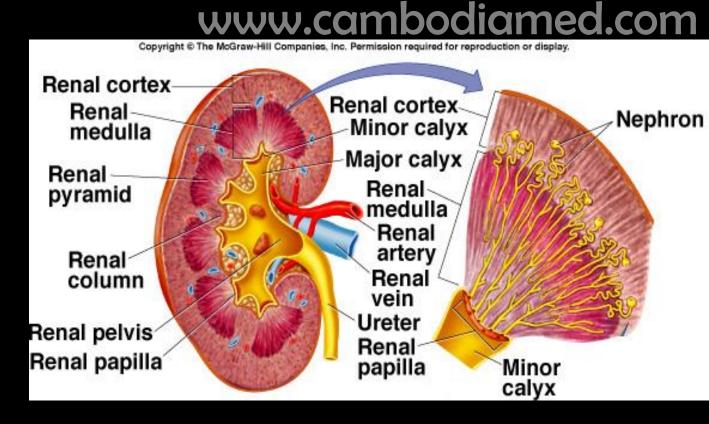


Physiology of the Kidneys

www.cambodiamed.com

Download from: www.aghalibrary.com


www.cambodiamed.com

Kidney Function

- Regulate ECF (plasma and interstitial fluid) through formation of urine.
 - Primary function.
- Regulate volume of blood plasma.
 - BP.
- Regulate [waste products] in the blood.
- Regulate concentration of electrolytes.
 - Na⁺, K⁺, and HCO₃⁻ and other ions.
- Regulate pH.
- Secrete erythropoietin.

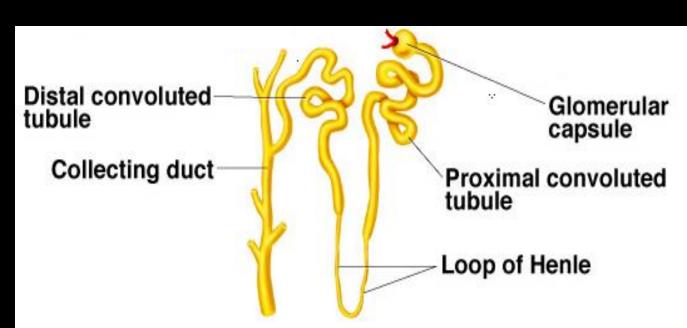
Structure of the Kidney

- Outer cortex:
 - Contains many capillaries.
- Medulla:
 - Renal pyramids separated by renal columns.
 - Pyramid contains minor calyces which unite to form a major calyx.

- Major calyces form renal pelvis.
- Renal pelvis collects urine.

Downlead Transportes unime to ureters. www.cambodiamed.com

Micturition Reflex

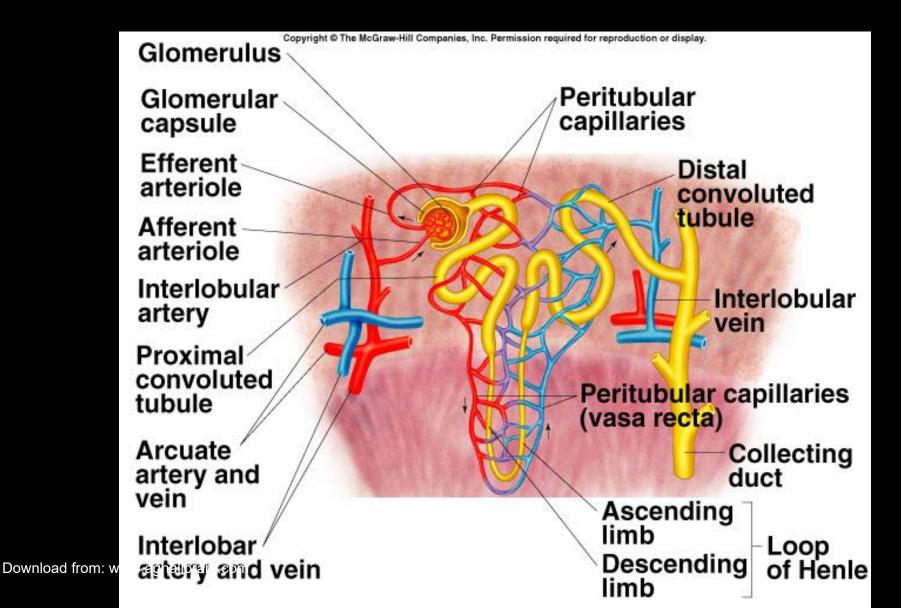

- Actions of the internal urethral sphincter and the external urethral sphincter are regulated by reflex control center located in the spinal cord.
 - Filling of the urinary bladder activates the stretch receptors, that send impulses to the micturition center.
 - Activates parasympathetic neurons, causing rhythmic contraction of the detrusor muscle and relaxation of the internal urethral sphincter.
 - Voluntary control over the external urethral sphincter.
- When urination occurs, descending motor tracts to the micturition center inhibit somatic motor fibers of the external urethral sphincter.

www.cambodiamed.com

www.cambodiamed.com

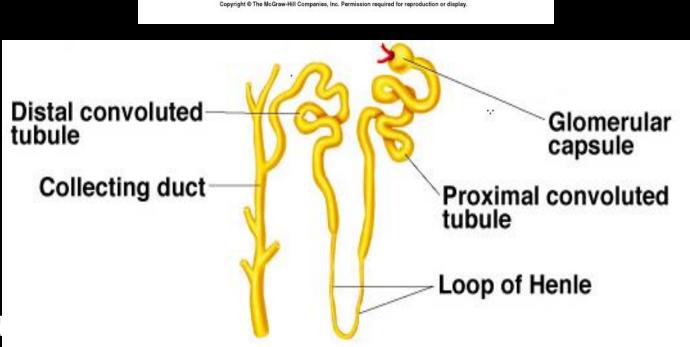
Nephron

- Functional unit of the kidney.
- Consists of:
 - Blood vessels:
 - Vasa recta.
 - Peritubular capillaries.
 - Urinary tubules:
 - PCT.
 - LH.
 - DCT.
 - CD.



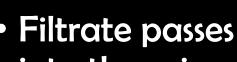
www.cambodiamed.com

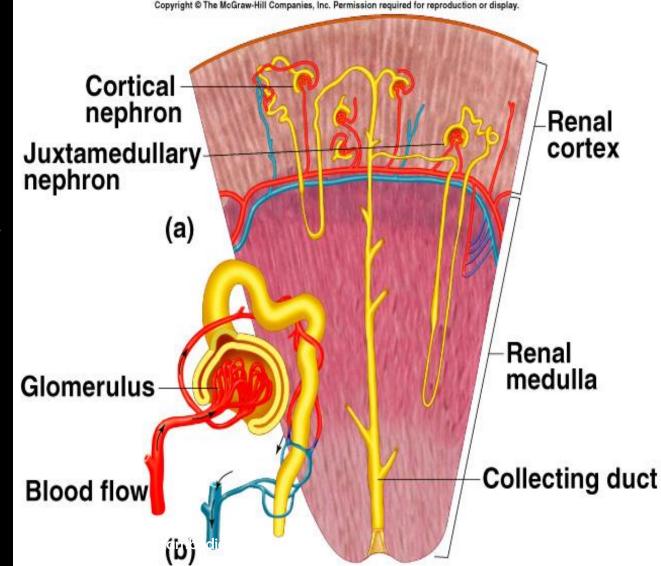
Renal Blood Vessels


- Afferent arteriole:
 - Delivers blood into the glomeruli.
- Glomeruli:
 - Capillary network that produces filtrate that enters the urinary tubules.
- Efferent arteriole:
 - Delivers blood from glomeruli to peritubular capillaries.
- Peritubular capillaries:
 - Deliver blood to vasa recta.

Renal Blood Vessels (continued)

Nephron Tubules


- Glomerular capsule.
- Proximal convoluted tubule (PCT).
- Descending and ascending limbs of Loop of Henle (LH).
- Distal convoluted tubule (DCT).
- Collecting duct (CD).


Glomerular Capsule

- Surrounds the glomerulus.
 - Location where ulletglomerular filtration occurs.
- Filtrate passes into the urinary space into PCT.

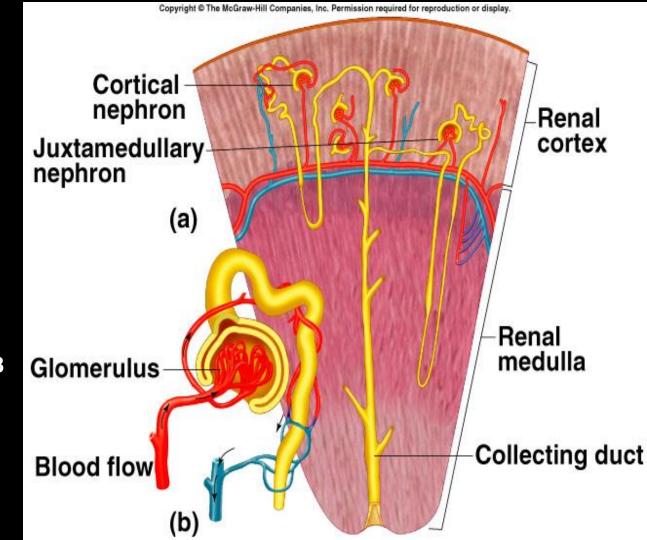
Download from: www.aghalibrary.com

Proximal Convoluted Tubule

- Single layer of cuboidal cells with millions of microvilli.
 - Increase surface area for reabsorption.
- PCT functions:
 - Reabsorption.
 - Secretion.

Loop of Henle

- Fluid passes from PCT to LH.
- Descending limb:
 - H₂O reabsorption.
- Ascending limb:
 - Active transport of Na⁺.
 - Impermeable to H_2O .


Distal Convoluted Tubule

- Contains few microvilli.
- Functions:
 - Secretion.
 - Reabsorption.
- Terminates in CD.

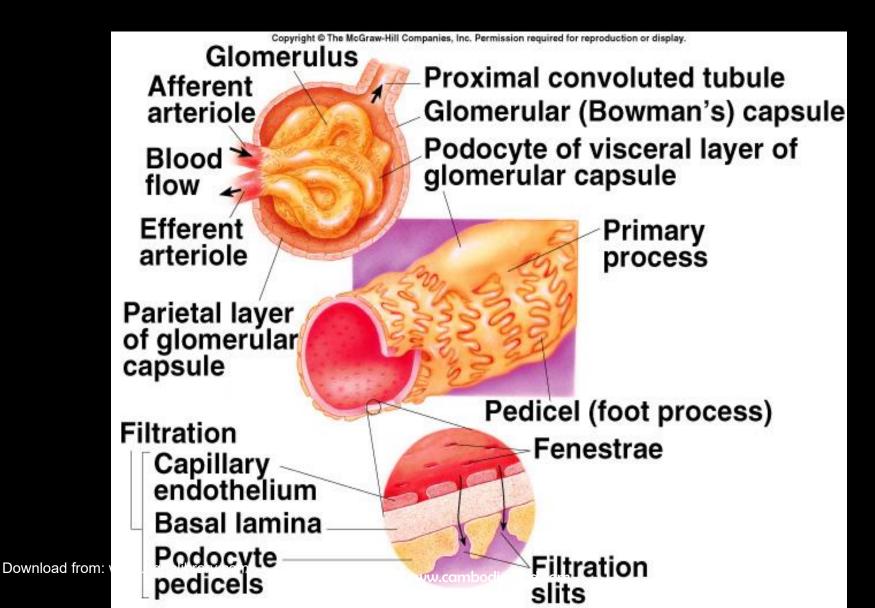
Type of Nephrons

- Cortical nephron:
 - Originates in outer 2/3 of cortex.
 - Osmolarity of 300 mOsm/l.
 - Involved in solute reabsorption.
- Juxtamedullary nephron:
 - Originates in inner 1/3 cortex.
 - Important in the ability to produce a concentrated urine.

Download from: www.achalibrary.com

Collecting Duct

- Receives fluid from the DCT of several nephrons.
- Passes through renal pyramid into minor calyx.
- Functions:
 - Reabsorption.
 - H_2O reabsorption influenced by ADH.
 - Secretion.


Glomerular Filtration Membrane

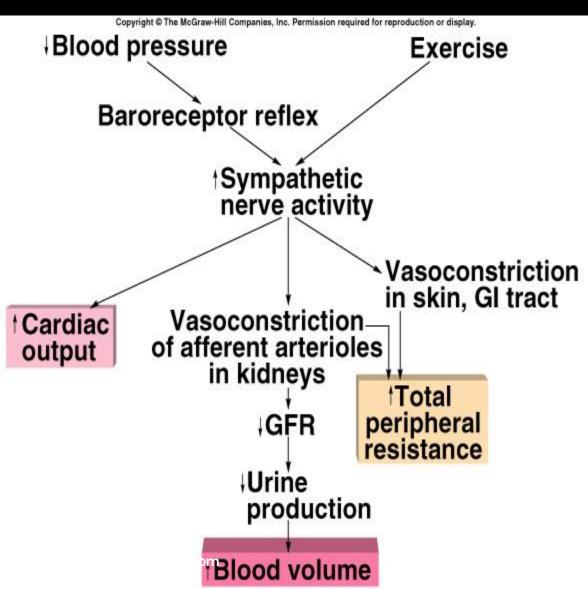
- Endothelial capillary pores are large fenestrae.
- 100-400 times more permeable to plasma, H₂O, and dissolved solutes than capillaries of skeletal muscles.
- Pores are small enough to prevent RBCs, platelets, and WBCs from passing through the pores.

Glomerular Filtration Membrane (continued)

- Filtrate must pass through the basement membrane:
 - Thin glycoprotein layer.
 - Negatively charged.
- Podocytes:
 - Foot pedicels form small filtration slits.
 - Passageway through which filtered molecules must pass.

Glomerular Filtration Membrane (continued)

Glomerular Ultrafiltrate


- Fluid that enters glomerular capsule is called ultrafiltrate.
 - Glomerular filtration:
 - Mechanism of producing ultrafiltrate under hydrostatic pressure of the blood.
 - Process similar to the formation of tissue fluid by other capillary beds.
- Glomerular filtration rate (GFR):
 - Volume of filtrate produced by both kidneys each minute.
 - Averages 115 ml/min. in women; 125 ml/min. in men.

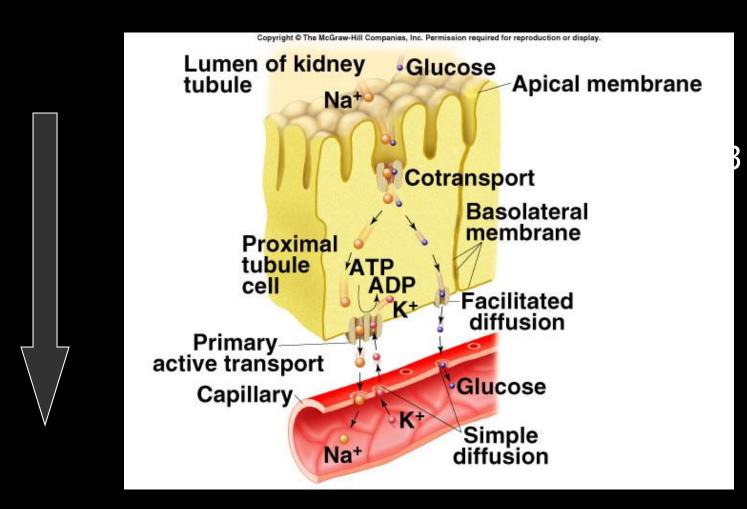
Regulation of GFR

- Vasoconstriction or dilation of the afferent arterioles affects the rate of blood flow to the glomerulus.
 - Affects GFR.
- Mechanisms to regulate GFR:
 - Sympathetic nervous system.
 - Autoregulation.
- Changes in diameter result from extrinsic and intrinsic mechanisms.

Sympathetic Regulation of GFR

- Stimulates vasoconstrictio of afferent arterioles.
 - Preserves blood volume to muscles and heart.
- Cardiovascular shock:
 - Decreases glomerular capillary hydrostatic pressure.
 - Decreases urine output (UO).

Download from: www.aghalibrary.com


Renal Autoregulation of GFR

- Ability of kidney to maintain a constant GFR under systemic changes.
 - Achieved through effects of locally produced chemicals on the afferent arterioles.
- When MAP drops to 70 mm Hg, afferent arteriole dilates.
- When MAP increases, vasoconstrict afferent arterioles.
- Tubuloglomerular feedback:
 - Increased flow of filtrate sensed by macula densa cells in thick ascending LH.
 - Signals afferent arterioles to constrict.

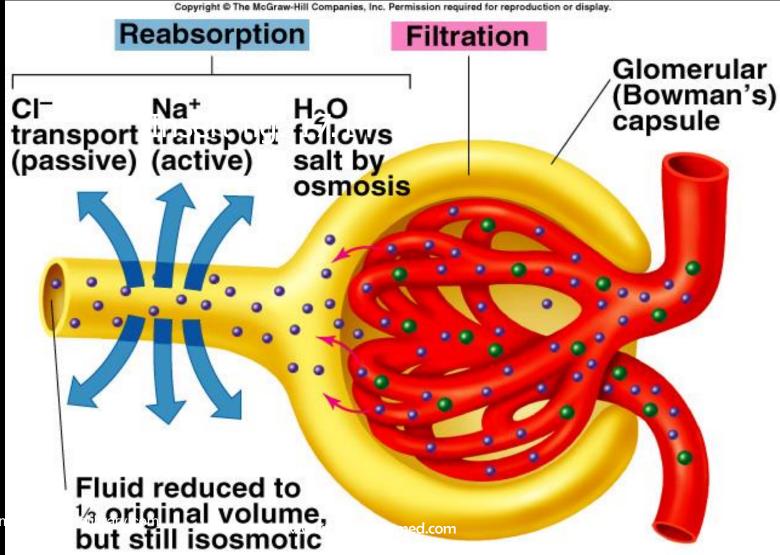
Reabsorption of Salt and H₂O

- Return of most of the molecules and H_2O from the urine filtrate back into the peritubular capillaries.
 - About 180 L/day of ultrafiltrate produced; however, only 1–2 L of urine excreted/24 hours.
 - Urine volume varies according to the needs of the body.
- Minimum of 400 ml/day urine necessary to excrete metabolic wastes (obligatory water loss).

Reabsorption in Proximal Tubule

Download from: www.aghalibrary.com

www.cambodiamed.com


PCT

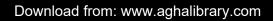
- Total [solute] is = 300 mOsm/L.
- Reabsorption of H₂O by osmosis, cannot occur without active transport:
 - [Na⁺] in glomerular ultrafiltrate is 300 mOm/L.
 - PCT epithelial cells have lower [Na⁺].
- Due to low permeability of plasma membrane to Na⁺.
 - Active transport of Na⁺ out of the cell by Na⁺/K⁺ pumps.
 - Favors [Na⁺] gradient:
 - Na⁺ diffusion into cell.

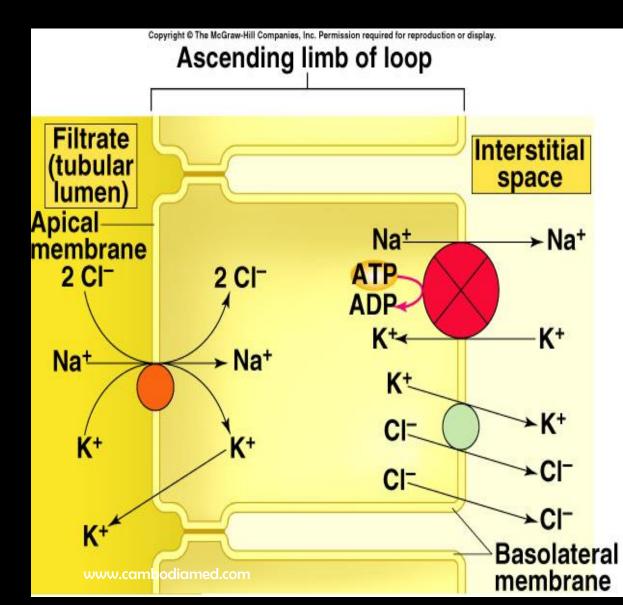
- Na⁺/K⁺ ATPase pump located in basal and lateral sides of cell membrane, creates gradient for diffusion of Na⁺ across the apical membrane.
- Na⁺/K⁺ ATPase pump extrudes Na⁺.
 - Creates potential difference across the wall of the tubule, with lumen as -pole.
- Electrical gradient causes Cl⁻ movement towards higher [Na⁺].
 - H₂O follows by osmosis.

Salt and Water Reabsorption in Proximal Tubule

Download fron

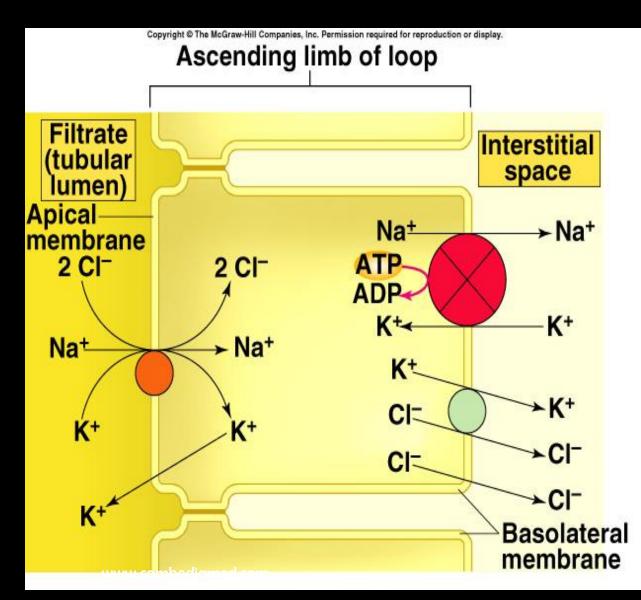
Significance of PCT Reabsorption


- 65% Na⁺, Cl⁻, and H₂O reabsorbed across the PCT into the vascular system.
- 90% K⁺ reabsorbed.
- Reabsorption occurs constantly regardless of hydration state.
 - Not subject to hormonal regulation.
- Energy expenditure is 6% of calories consumed at rest.

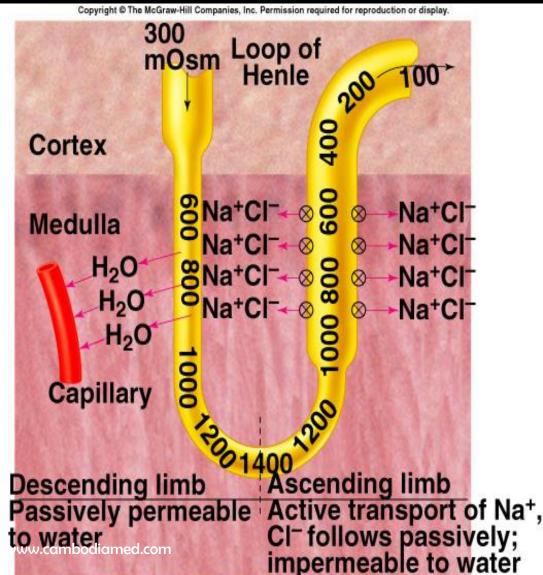

Countercurrent Multiplier

- In order for H_2O to be reabsorbed, interstitial fluid must be hypertonic.
- Osmotic pressure of the interstitial tissue fluid is 4 x that of plasma.
 - Results partly from the fact that the tubule bends permitting interaction between the descending and ascending limbs.

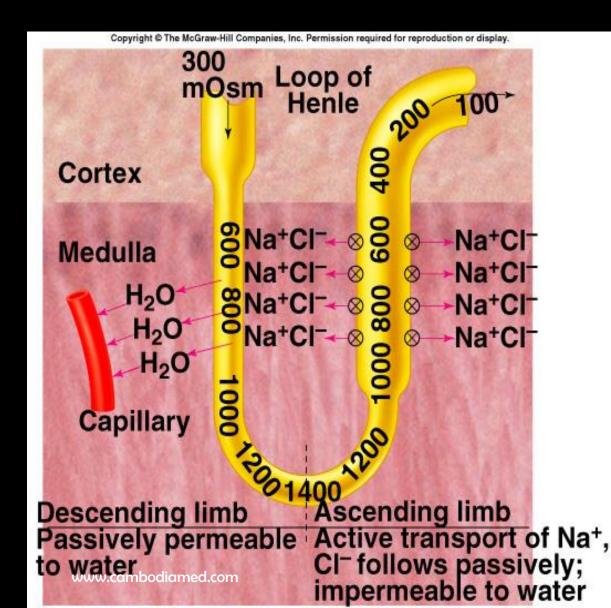
Ascending Limb LH


- NaCl is actively extruded from the ascending limb into surrounding interstitial fluid.
- Na⁺ diffuses into tubular cell with the secondary active transport of K⁺ and Cl⁻.
- Occurs at a ratio of 1 Na⁺ and 1 K⁺ to 2 Cl⁻.

Ascending Limb LH (continued)

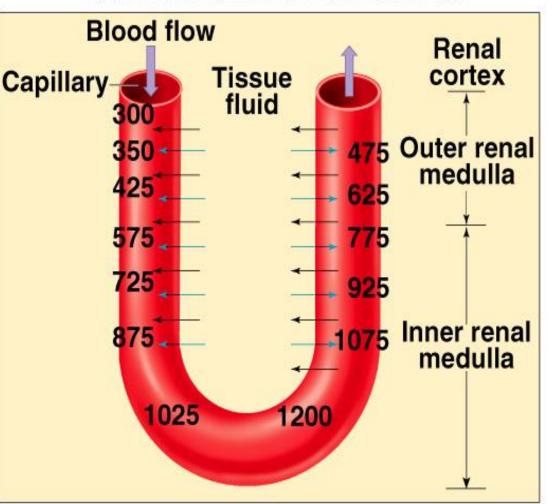

- Na⁺ actively transported across the basolateral membrane by Na⁺/ K⁺ ATPase pump.
- Cl⁻ passively follows Na⁺ down electrical gradient.
- K⁺ passively diffuses back into filtrate.
- Ascending walls are impermeable to H₂O.

Descending Limb LH


- Deeper regions of medulla reach 1400 mOsm/L.
- Impermeable to passive diffusion of NaCl.
- Permeable to H_2O .
- Hypertonic interstitial fluid causes H₂O movement out of the descending limb via osmosis, and H₂O enters capillaries.
- Fluid volume decreases in tubule, causing higher [Na⁺] in the ascending limb.

Download from: www.aghalibrary.com

Countercurrent Multiplier System

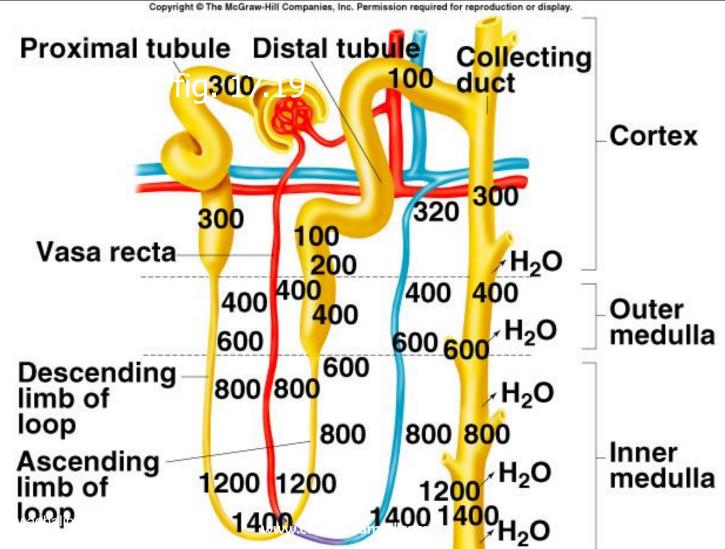

- Multiplies the [interstitial fluid] and [descending limb fluid].
- Flow in opposite directions in the ascending and descending limbs.
- Close proximity of the 2 limbs:
 - Allows interaction.
- **Positive feedback.** Download from: www.aghalibrary.com

Vasa Recta

- Countercurrent
 exchange.
- Recycles NaCl in medulla.
- Transports H₂O from interstitial fluid.
- Descending limb:
 - Urea transporters.
 - Aquaporin proteins (H₂0 channels).
- Ascending limb:
 - Fenestrated capillaries.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Black arrows = diffusion of NaCl and urea Blue arrows = movement of water by osmosis

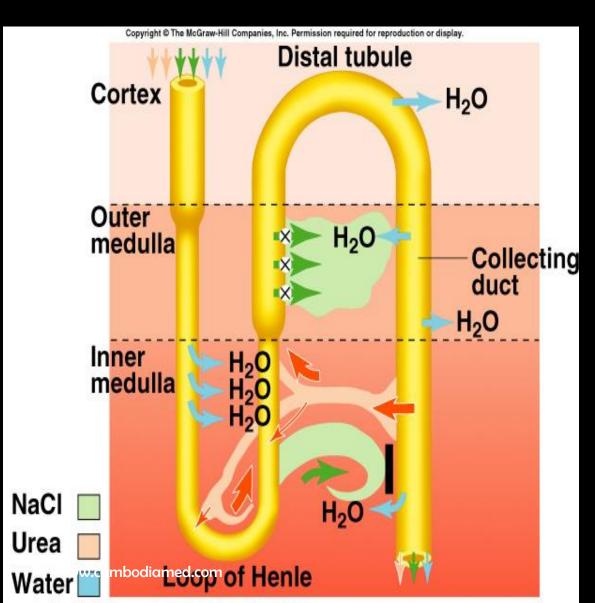

Download from: www.aghalibrary.com

Vasa Recta (continued)

- Vasa recta maintains hypertonicity by countercurrent exchange.
- NaCl and urea diffuse into descending limb and diffuse back into medullary tissue fluid.
- At each level of the medulla, [solute] is higher in the ascending limb than in the interstitial fluid; and higher in the interstitial fluid than in descending vessels.
- Walls are permeable to H₂O, NaCl and urea.
- Colloid osmotic pressure in vasa recta > interstitial fluid.

Download from: www.aghalibrary.com

Osmolality of Different Regions of the Kidney

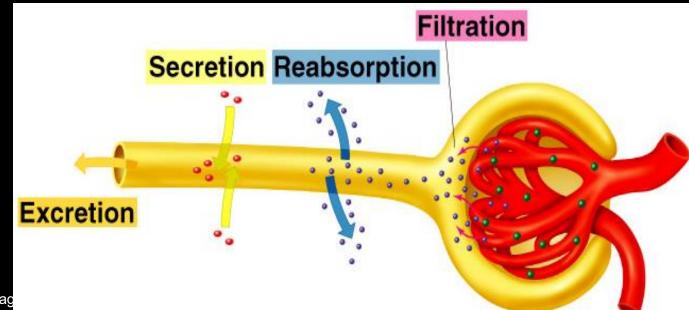


Download from:

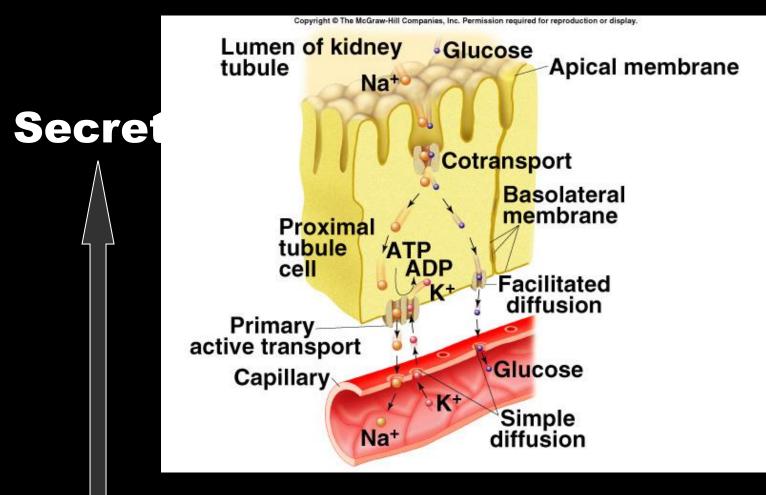
Urea

- Contributes to total osmolality of interstitial fluid.
- Ascending limb LH and terminal CD are permeable to urea.
 - Terminal CD has urea transporters.
- Urea diffuses out CD and into ascending limb LH.
 - Recycle urea.

Download from: www.aghalibrary.com


Collecting Duct

- Medullary area impermeable to high [NaCl] that surrounds it.
 - The walls of the CD are permeable to H_2O .
- H₂O is drawn out of the CD by osmosis.
 - Rate of osmotic movement is determined by the # of aquaporins in the cell membrane.
- Permeable to H_2O depends upon the presence of ADH.
 - When ADH binds to its membrane receptors on CD, it acts via cAMP.
 - Stimulates fusion of vesicles with plasma membrane.
 - Incorporates water channels into plasma membrane.


Download from: www.aghalibrary.com

Secretion

- Secretion of substances from the peritubular capillaries into interstitial fluid.
 - Then transported into lumen of tubule, and into the urine.
- Allows the kidneys to rapidly eliminate certain potential toxins.

Proximal Tubule

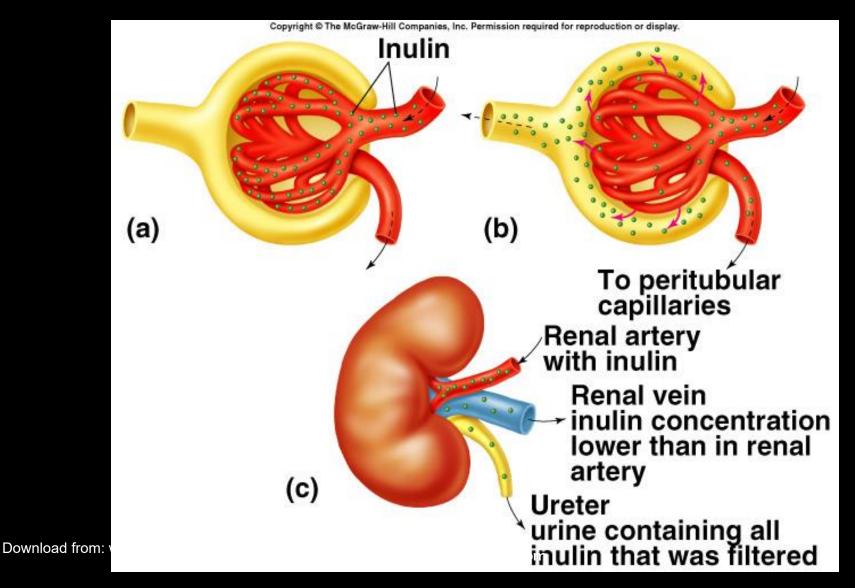
Download from: www.aghalibrary.com

Transport Process Affecting Renal Clearance

- Ability of the kidneys to remove molecules from plasma and excrete those molecules in the urine.
- If a substance is not reabsorbed or secreted, then the amount excreted = amount filtered.

Quantity excreted = V x U

- Quantity excreted = mg/min.
- V = rate of urine formation.
- U = inulin concentration in urine.


Measurement of GFR

- If a substance is neither reabsorbed nor secreted by tubule:
 - The amount excreted in urine/min. will be equal to the amount filtered out of the glomeruli/min.
- Rate at which a substance is filtered by the glomeruli can be calculated:

Quantity filtered = GFR x P

- P = inulin concentration in plasma.
- Amount filtered = amount excreted
 GFR = <u>V × U</u>

Renal Clearance of Inulin

Renal Plasma Clearance

- Volume of plasma from which a substance is completely removed in 1 min. by excretion in the urine.
- Substance is filtered, but not reabsorbed:
 - All filtered will be excreted.
- Substance filtered, but also secreted and excreted will be:
 - > GFR (GFR = 120 ml/ min.).

Renal Plasma Clearance

Renal plasma clearance = **V × U**

- V = urine volume per min.
- U = concentration of substance in urine
- P = concentration of substance in plasma
- Compare renal "handling" of various substances in terms of reabsorption or secretion.

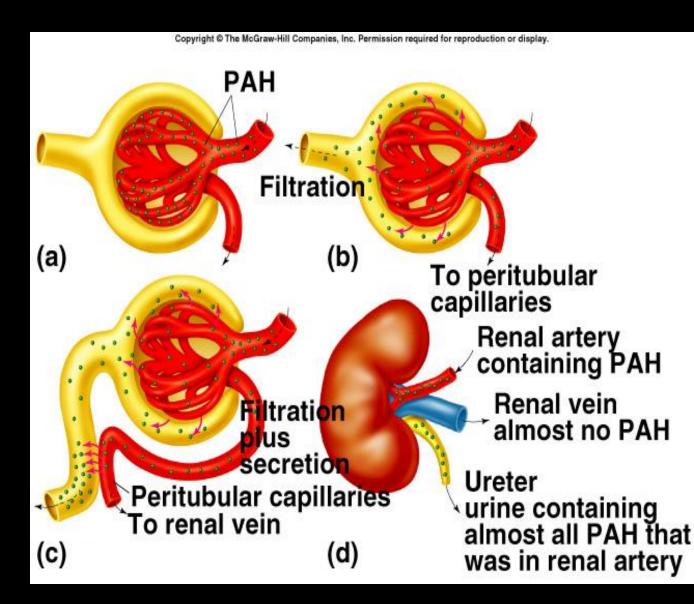
•

Clearance of Urea

- Urea is secreted into blood and filtered into glomerular capsule.
- Urea clearance is 75 ml/min., compared to clearance of inulin (120 ml/min.).
 - 40-60% of filtered urea is always reabsorbed.
- Passive process because of the presence of carriers for facilitative diffusion of urea.

Measurement of Renal Blood Flow

- Not all blood delivered to glomeruli is filtered in the glomerular capsules.
 - Most of glomerular blood passes to the efferent arterioles.
 - 20% renal plasma flow filtered.
 - Substances are returned back to blood.
- Substances in unfiltered blood must be secreted into tubules to be cleared by active transport (PAH).
 - PAH can be used to measure renal plasma flow.


Measurement of Renal Blood Flow (continued)

- Filtration and secretion clear only the molecules dissolved in plasma.
 - PAH clearance actually measures renal plasma flow.
- To convert to total renal blood flow, the amount of blood occupied by erythrocytes must be taken into account.
 - Averages 625 ml/min.

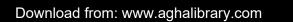
Total Renal Blood Flow

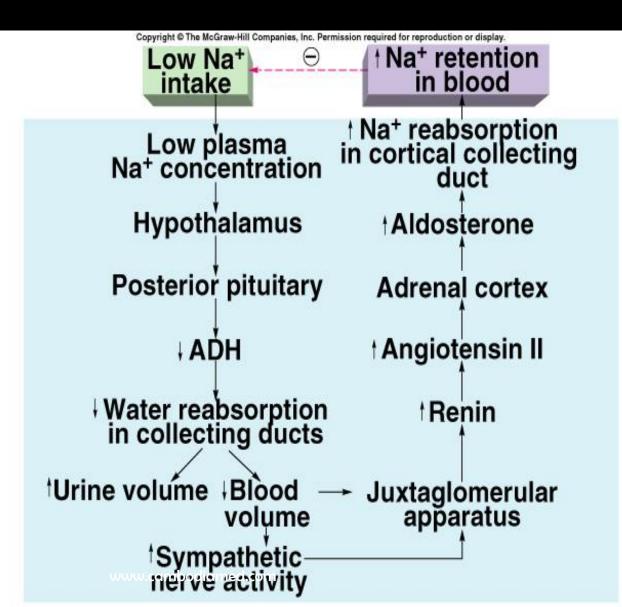
- 45% blood is RBCs
- 55% plasma
- Total renal blood flow = <u>PAH clearance</u>

0.55

Glucose and Amino Acid Reabsorption

- Filtered glucose and amino acids are normally reabsorbed by the nephrons.
 - In PCT occurs by secondary active transport with membrane carriers.
 - Carrier mediated transport displays:
 - Saturation.
 - T_m.
 - [Transported molecules] needed to saturate carriers and achieve maximum transport rate.
- Renal transport threshold:
 - Minimum plasma [substance] that results in excretion of that substance in the urine.
 - Renal plasma threshold for glucose = 180-200 mg/dl.

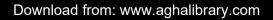

Download from: www.aghalibrary.com

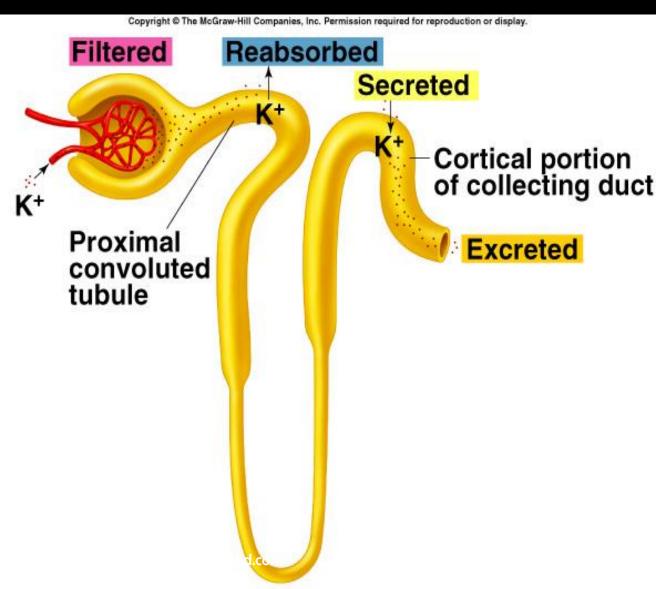

Electrolyte Balance

- Kidneys regulate Na⁺, K⁺, H⁺, Cl⁻, HCO₃⁻, and PO₄⁻³.
- Control of plasma Na⁺ is important in regulation of blood volume and pressure.
- Control of plasma of K⁺ important in proper function of cardiac and skeletal muscles.
 - Match ingestion with urinary excretion.

Na⁺ Reabsorption

- 90% filtered Na⁺ reabsorbed in PCT.
- In the absence of aldosterone, 80% of the remaining Na⁺ is reabsorbed in DCT.
- Final [Na⁺] controlled in CD by aldosterone.
- When aldosterone is secreted in maximal amounts, all Na⁺ in DCT is reabsorbed.

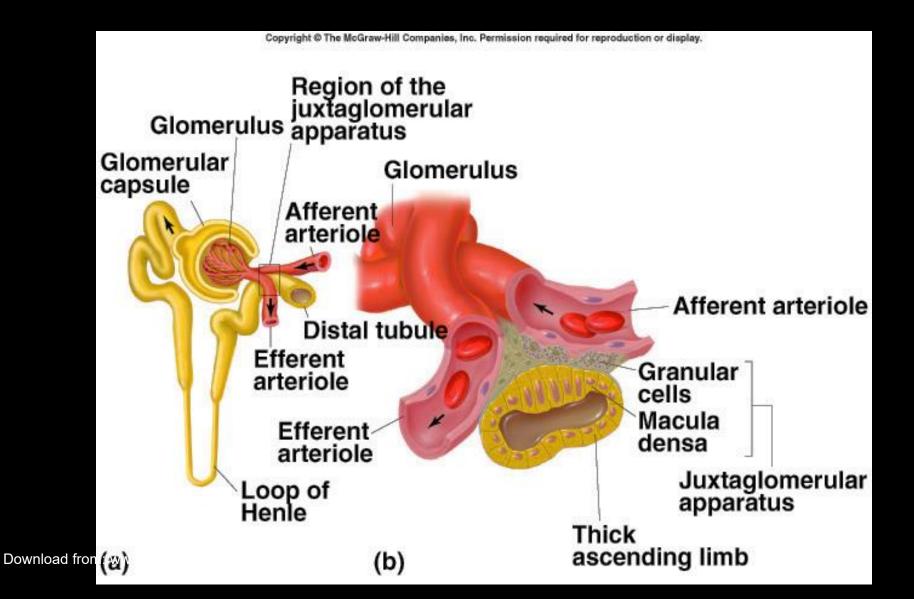



K⁺ Secretion

- 90% filtered K⁺ is reabsorbed in early part of the nephron.
- Secretion of K⁺ occurs in CD.
 - Amount of K⁺ secreted depends upon:
 - Amount of Na⁺ delivered to the region.
 - Amount of aldosterone secreted.
 - As Na⁺ is reabsorbed, lumen of tubule becomes –charged.
 - Potential difference drives secretion of K⁺ into tubule.
 - Transport carriers for Na⁺ separate from transporters for K⁺.

K⁺ Secretion (continued)

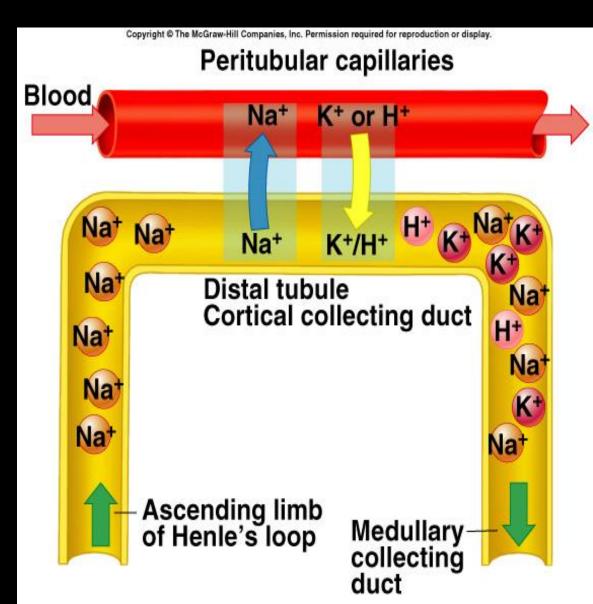
- Final [K⁺] controlled in CD by aldosterone.
 - When aldosterone is absent, no K⁺ is excreted in the urine.
- High [K⁺] or low [Na⁺] stimulates the secretion of aldosterone.
- Only means by which K⁺ is secreted



Juxtaglomerular Apparatus

- Region in each nephron where the afferent arteriole comes in contact with the thick ascending limb LH.
- Granular cells within afferent arteriole secrete renin:
 - Converts angiotensinogen to angiotensin I.
 - Initiates the renin-angiotensin-aldosterone system.
 - Negative feedback.
- Macula densa:
 - Region where ascending limb is in contact with afferent arteriole.
 - Inhibits renin secretion when blood [Na⁺] in blood increases.

Juxtaglomerular Apparatus (continued)



ANP

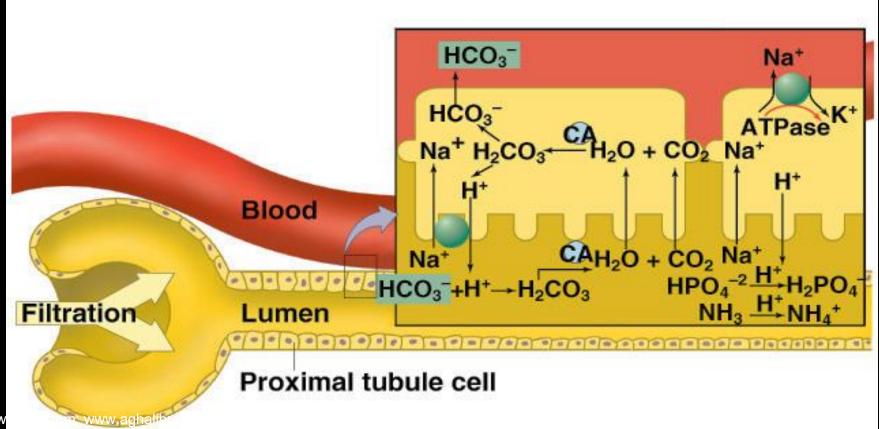
- Produced by atria due to stretching of walls.
- Antagonist to aldosterone.
- Increases Na⁺ and H₂O excretion.
- Acts as an endogenous diuretic.

Na⁺, K⁺, and H⁺ Relationship

- Na⁺ reabsorption in CD creates electrical gradient for K⁺ secretion.
- Plasma [K⁺] indirectly affects [H⁺].
- When extracellular [H⁺] increases, H⁺ moves into the cell, causing K⁺ to diffuse into the ECF.
- In severe acidosis, H⁺ is secreted at the
 Downloexpensegofor K⁺, com

Renal Acid-Base Regulation

- Kidneys help regulate blood pH by excreting H⁺ and reabsorbing HCO₃⁻.
- Most of the H⁺ secretion occurs across the walls of the PCT in exchange for Na⁺.
 - Antiport mechanism.
 - Moves Na⁺ and H⁺ in opposite directions.
- Normal urine normally is slightly acidic because the kidneys reabsorb almost all HCO₃⁻ and excrete H⁺.
 - Returns blood pH back to normal range.

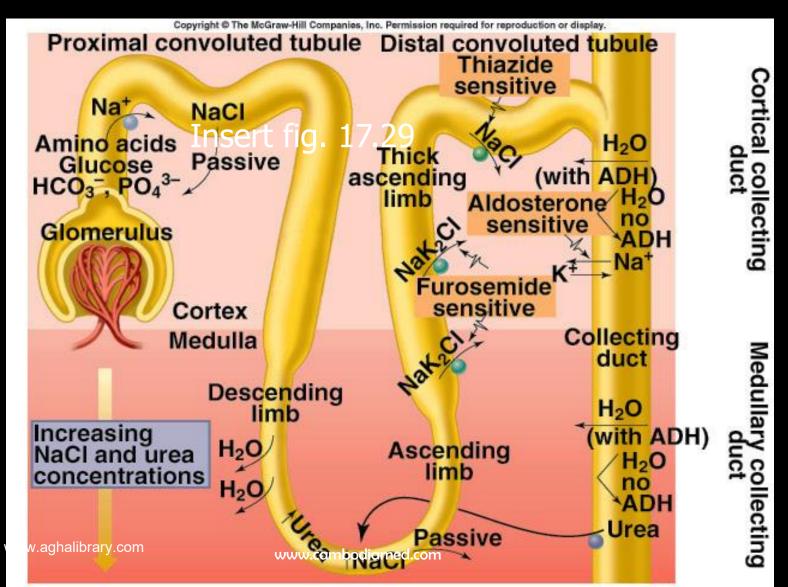

Download from: www.aghalibrary.com

Reabsorption of HCO₃⁻

- Apical membranes of tubule cells are impermeable to HCO₃⁻.
 - Reabsorption is indirect.
- When urine is acidic, HCO_3^- combines with H⁺ to form $H_2CO_3^-$, which is catalyzed by ca located in the apical cell membrane of PCT.
 - As [CO₂] increases in the filtrate, CO₂ diffuses into tubule cell and forms H₂CO₃.
 - H₂CO₃ dissociates to HCO₃⁻ and H⁺.
- HCO₃⁻ generated within tubule cell diffuses into peritubular capillary.

Acidification of Urine

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


Urinary Buffers

- Nephron cannot produce a urine pH < 4.5.
- In order to excrete more H⁺, the acid must be buffered.
- H⁺ secreted into the urine tubule and combines with HPO₄⁻² or NH₃.
- $HPO_4^{-2} + H^+$ $H_2PO_4^{-2}$
- $NH_3 + H^+$ NH_4^+

Diuretics

- Increase urine volume excreted.
 - Increase the proportion of glomerular filtrate that is excreted as urine.
- Loop diuretics:
 - Inhibit NaCl transport out of the ascending limb of the LH.
- Thiazide diuretics:
 - Inhibit NaCl reabsorption in the 1st segment of the DCT.
- Ca inhibitors:
 - Prevent H₂O reabsorption in PCT when HCO_s⁻ is reabsorbed.
- Osmotic diuretics:
 - Increase osmotic pressure of filtrate.

Clinical Diuretics Sites of Action

Download from:

Kidney Diseases

- Acute renal failure:
 - Ability of kidneys to excrete wastes and regulate homeostasis of blood volume, pH, and electrolytes impaired.
 - Rise in blood [creatinine].
 - Decrease in renal plasma clearance of creatinine.
- Glomerulonephritis:
 - Inflammation of the glomeruli.
 - Autoimmune disease by which antibodies have been raised against the glomerulus basement membrane.
 - Leakage of protein into the urine.

Kidney Diseases (continued)

- Renal insufficiency:
 - Nephrons are destroyed.
 - Clinical manifestations:
 - Salt and H₂O retention.
 - Uremia.
 - Elevated plasma [H⁺] and [K⁺].
- Dialysis:
 - Separates molecules on the basis of the ability to diffuse through selectively permeable membrane.

Improve Medical Slides Please suggest a feedback message to our official page: <u>The Best Doctors</u>

www.cambodiamed.com

Don't remove our credit for this hard working

Our Respects!

Cambodian MED Team

Download from: www.aghalibrary.com