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1 Static Economic Models and The Concept of Equilibrium

Here we use three elementary examples to illustrate the general structure of an eco-
nomic model.

1.1 Partial market equilibrium model

A partial market equilibrium model is constructed to explain the determination of
the price of a certain commodity. The abstract form of the model is as follows.

Qd = D(P ; a) Qs = S(P ; a) Qd = Qs,

Qd: quantity demanded of the commodity D(P ; a): demand function
Qs: quantity supplied to the market S(P ; a): supply function
P : market price of the commodity
a: a factor that affects demand and supply

Equilibrium: A particular state that can be maintained.
Equilibrium conditions: Balance of forces prevailing in the model.
Substituting the demand and supply functions, we have D(P ; a) = S(P ; a).
For a given a, we can solve this last equation to obtain the equilibrium price P ∗ as
a function of a. Then we can study how a affects the market equilibrium price by
inspecting the function.

Example: D(P ; a) = a2/P , S(P ) = 0.25P . a2/P ∗ = 0.25P ∗ ⇒ P ∗ = 2a, Q∗
d = Q∗

s =
0.5a.

1.2 General equilibrium model

Usually, markets for different commodities are interrelated. For example, the price
of personal computers is strongly influenced by the situation in the market of micro-
processors, the price of chicken meat is related to the supply of pork, etc. Therefore,
we have to analyze interrelated markets within the same model to be able to capture
such interrelationship and the partial equilibrium model is extended to the general
equilibrium model. In microeconomics, we even attempt to include every commodity
(including money) in a general equilibrium model.
Qd1 = D1(P1, . . . , Pn; a)
Qs1 = S1(P1, . . . , Pn; a)

Qd1 = Qs1

Qd2 = D2(P1, . . . , Pn; a)
Qs2 = S2(P1, . . . , Pn; a)

Qd2 = Qs2

. . . Qdn = Dn(P1, . . . , Pn; a)
Qsn = Sn(P1, . . . , Pn; a)

Qdn = Qsn

Qdi: quantity demanded of commodity i
Qsi: quantity supplied of commodity i
Pi: market price of commodity i
a: a factor that affects the economy

Di(P1, . . . , Pn; a): demand function of commodity i
Si(P1, . . . , Pn; a): supply function of commodity i

We have three variables and three equations for each commodity/market.



2

Substituting the demand and supply functions, we have

D1(P1, . . . , Pn; a)− S1(P1, . . . , Pn; a) ≡ E1(P1, . . . , Pn; a) = 0
D2(P1, . . . , Pn; a)− S2(P1, . . . , Pn; a) ≡ E2(P1, . . . , Pn; a) = 0

...
...

Dn(P1, . . . , Pn; a)− Sn(P1, . . . , Pn; a) ≡ En(P1, . . . , Pn; a) = 0.

For a given a, it is a simultaneous equation in (P1, . . . , Pn). There are n equations
and n unknown. In principle, we can solve the simultaneous equation to find the
equilibrium prices (P ∗

1 , . . . , P ∗
n).

A 2-market linear model:
D1 = a0 + a1P1 + a2P2, S1 = b0 + b1P1 + b2P2, D2 = α0 + α1P1 + α2P2, S2 =
β0 + β1P1 + β2P2.

(a0 − b0) + (a1 − b1)P1 + (a2 − b2)P2 = 0
(α0 − β0) + (α1 − β1)P1 + (α2 − β2)P2 = 0.

1.3 National income model

The most fundamental issue in macroeconomics is the determination of the national
income of a country.

C = a + bY (a > 0, 0 < b < 1)
I = I(r)
Y = C + I + Ḡ
S = Y − C.

C: Consumption Y : National income
I: Investment S: Savings
Ḡ: government expenditure r: interest rate

a, b: coefficients of the consumption function.

To solve the model, we substitute the first two equations into the third to obtain
Y = a + bY + I0 + Ḡ⇒ Y ∗ = (a + I(r) + Ḡ)/(1− b).

1.4 The ingredients of a model

We set up economic models to study economic phenomena (cause-effect relation-
ships), or how certain economic variables affect other variables. A model consists of
equations, which are relationships among variables.

Variables can be divided into three categories:
Endogenous variables: variables we choose to represent different states of a model.
Exogenous variables: variables assumed to affect the endogenous variables but are
not affected by them.
Causes (Changes in exogenous var.) ⇒ Effects (Changes in endogenous var.)
Parameters: Coefficients of the equations.
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End. Var. Ex. Var. Parameters
Partial equilibrium model: P , Qd, Qs a Coefficients of D(P ; a), S(P ; a)
General equilibrium model: Pi, Qdi, Qsi a
Income model: C, Y , I, S r, Ḡ a, b

Equations can be divided into three types:
Behavioral equations: representing the decisions of economic agents in the model.
Equilibrium conditions: the condition such that the state can be maintained (when
different forces/motivations are in balance).
Definitions: to introduce new variables into the model.

Behavioral equations Equilibrium cond. Definitions
Partial equilibrium model: Qd = D(P ; a), Qs = S(P ; a) Qd = Qs

General equilibrium model: Qdi = Di(P1, . . . , Pn), Qdi = Qsi

Qsi = Si(P1, . . . , Pn)
Income model: C = a + bY , I = I(r) Y = C + I + Ḡ S = Y − C

1.5 The general economic model

Assume that there are n endogenous variables and m exogenous variables.
Endogenous variables: x1, x2, . . . , xn

Exogenous variables: y1, y2, . . . , ym.
There should be n equations so that the model can be solved.

F1(x1, x2, . . . , xn; y1, y2, . . . , ym) = 0
F2(x1, x2, . . . , xn; y1, y2, . . . , ym) = 0

...
Fn(x1, x2, . . . , xn; y1, y2, . . . , ym) = 0.

Some of the equations are behavioral, some are equilibrium conditions, and some are
definitions.

In principle, given the values of the exogenous variables, we solve to find the
endogenous variables as functions of the exogenous variables:

x1 = x1(y1, y2, . . . , ym)
x2 = x1(y1, y2, . . . , ym)

...
xn = x1(y1, y2, . . . , ym).

If the equations are all linear in (x1, x2, . . . , xn), then we can use Cramer’s rule (to
be discussed in the next part) to solve the equations. However, if some equations are
nonlinear, it is usually very difficult to solve the model. In general, we use comparative
statics method (to be discussed in part 3) to find the differential relationships between
xi and yj:

∂xi

∂yj
.
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1.6 Problems

1. Find the equilibrium solution of the following model:

Qd = 3− P 2, Qs = 6P − 4, Qs = Qd.

2. The demand and supply functions of a two-commodity model are as follows:

Qd1 = 18− 3P1 + P2 Qd2 = 12 + P1 − 2P2

Qs1 = −2 + 4P1 Qs2 = −2 + 3P2

Find the equilibrium of the model.

3. (The effect of a sales tax) Suppose that the government imposes a sales tax of
t dollars per unit on product 1. The partial market model becomes

Qd
1 = D(P1 + t), Qs

1 = S(P1), Qd
1 = Qs

1.

Eliminating Qd
1 and Qs

1, the equilibrium price is determined by D(P1 + t) =
S(P1).

(a) Identify the endogenous variables and exogenous variable(s).

(b) Let D(p) = 120−P and S(p) = 2P . Calculate P1 and Q1 both as function
of t.

(c) If t increases, will P1 and Q1 increase or decrease?

4. Let the national-income model be:

Y = C + I0 + G
C = a + b(Y − T0) (a > 0, 0 < b < 1)
G = gY (0 < g < 1)

(a) Identify the endogenous variables.

(b) Give the economic meaning of the parameter g.

(c) Find the equilibrium national income.

(d) What restriction(s) on the parameters is needed for an economically rea-
sonable solution to exist?

5. Find the equilibrium Y and C from the following:

Y = C + I0 + G0, C = 25 + 6Y 1/2, I0 = 16, G0 = 14.

6. In a 2-good market equilibrium model, the inverse demand functions are given
by

P1 = Q
−2

3

1 Q
1

3

2 , P2 = Q
1

3

1 Q
−2

3

2 .

(a) Find the demand functions Q1 = D1(P1, P2) and Q2 = D2(P1, P2).

(b) Suppose that the supply functions are

Q1 = a−1P1, Q2 = P2.

Find the equilibrium prices (P ∗
1 , P ∗

2 ) and quantities (Q∗
1, Q

∗
2) as functions

of a.
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2 Matrix Algebra

A matrix is a two dimensional rectangular array of numbers:

A ≡











a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn











There are n columns each with m elements or m rows each with n elements. We say
that the size of A is m× n.
If m = n, then A is a square matrix.
A m× 1 matrix is called a column vector and a 1× n matrix is called a row vector.
A 1× 1 matrix is just a number, called a scalar number.

2.1 Matrix operations

Equality: A = B ⇒ (1) size(A) = size(B), (2) aij = bij for all ij.
Addition/subtraction: A+B and A−B can be defined only when size(A) = size(B),
in that case, size(A+B) = size(A−B) = size(A) = size(B) and (A+B)ij = aij + bij ,
(A− B)ij = aij − bij . For example,

A =

(

1 2
3 4

)

, B =

(

1 0
0 1

)

⇒ A + B =

(

2 2
3 5

)

, A− B =

(

0 2
3 3

)

.

Scalar multiplication: The multiplication of a scalar number α and a matrix A,
denoted by αA, is always defined with size (αA) = size(A) and (αA)ij = αaij. For

example, A =

(

1 2
3 4

)

, ⇒ 4A =

(

4 8
12 16

)

.

Multiplication of two matrices: Let size(A) = m × n and size(B) = o × p, the
multiplication of A and B, C = AB, is more complicated. (1) it is not always defined.
(2) AB 6= BA even when both are defined. The condition for AB to be meaningful
is that the number of columns of A should be equal to the number of rows of B, i.e.,
n = o. In that case, size (AB) = size (C) = m× p.

A =











a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn











, B =











b11 b12 . . . b1p

b21 b22 . . . a2p
...

...
. . .

...
bn1 bn2 . . . anp











⇒C =











c11 c12 . . . c1p

c21 c22 . . . c2p
...

...
. . .

...
cm1 cm2 . . . cmp











,

where cij =
∑n

k=1 aikbkj .

Examples:

(

1 2
0 5

)(

3
4

)

=

(

3 + 8
0 + 20

)

=

(

11
20

)

,
(

1 2
3 4

)(

5 6
7 8

)

=

(

5 + 14 6 + 16
15 + 28 18 + 32

)

=

(

19 22
43 50

)

,



6

(

5 6
7 8

)(

1 2
3 4

)

=

(

5 + 18 10 + 24
7 + 24 14 + 32

)

=

(

23 34
31 46

)

.

Notice that

(

1 2
3 4

)(

5 6
7 8

)

6=
(

5 6
7 8

)(

1 2
3 4

)

.

2.2 Matrix representation of a linear simultaneous equation system

A linear simultaneous equation system:

a11x1 + . . . + a1nxn = b1
...

...
an1x1 + . . . + annxn = bn

Define A ≡







a11 . . . a1n
...

. . .
...

an1 . . . ann






, x ≡







x1
...

xn






and b ≡







b1
...
bn






. Then the equation

Ax = b is equivalent to the simultaneous equation system.

Linear 2-market model:

E1 = (a1 − b1)p1 + (a2 − b2)p2 + (a0 − b0) = 0
E2 = (α1 − β1)p1 + (α2 − β2)p2 + (α0 − β0) = 0

⇒
(

a1 − b1 a2 − b2

α1 − β1 α2 − β2

)(

p1

p2

)

+

(

a0 − b0

α0 − β0

)

=

(

0
0

)

.

Income determination model:

C = a + bY
I = I(r)

Y = C + I
⇒





1 0 −b
0 1 0
1 1 −1









C
I
Y



 =





a
I(r)
0



.

In the algebra of real numbers, the solution to the equation ax = b is x = a−1b.
In matrix algebra, we wish to define a concept of A−1 for a n × n matrix A so that
x = A−1b is the solution to the equation Ax = b.

2.3 Commutative, association, and distributive laws

The notations for some important sets are given by the following table.
N = nature numbers 1, 2, 3, . . . I = integers . . . ,−2,−1, 0, 1, 2, . . .
Q = rational numbers m

n
R = real numbers

Rn = n-dimensional column vectors M(m, n) = m× n matrices
M(n) = n× n matrices

A binary operation is a law of composition of two elements from a set to form a
third element of the same set. For example, + and × are binary operations of real
numbers R.
Another important example: addition and multiplication are binary operations of ma-
trices.
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Commutative law of + and × in R: a + b = b + a and a× b = b× a for all a, b ∈ R.
Association law of + and × in R: (a+ b)+ c = a+(b+ c) and (a× b)× c = a× (b× c)
for all a, b, c ∈ R.
Distributive law of + and × in R: (a+b)×c = a×c+b×c and c×(a+b) = c×a+c×b
for all a, b, c ∈ R.
The addition of matrices satisfies both commutative and associative laws: A + B =
B + A and (A + B) + C = A + (B + C) for all A, B, C ∈ M(m, n). The proof is
trivial.
In an example, we already showed that the matrix multiplication does not satisfy the
commutative law AB 6= BA even when both are meaningful.
Nevertheless the matrix multiplication satisfies the associative law (AB)C = A(BC)
when the sizes are such that the multiplications are meaningful. However, this de-
serves a proof!
It is also true that matrix addition and multiplication satisfy the distributive law:
(A + B)C = AC + BC and C(A + B) = CA + CB. You should try to prove these
statements as exercises.

2.4 Special matrices

In the space of real numbers, 0 and 1 are very special. 0 is the unit element of + and
1 is the unit element of ×: 0+a = a+0 = a, 0×a = a×0 = 0, and 1×a = a×1 = a.
In matrix algebra, we define zero matrices and identity matrices as

Om,n ≡







0 . . . 0
...

. . .
...

0 . . . 0






In ≡











1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1











.

Clearly, O+A = A+O = A, OA = AO = O, and IA = AI = A. In the multiplication

of real numbers if a, b 6= 0 then a×b 6= 0. However,

(

1 0
0 0

)(

0 0
0 1

)

=

(

0 0
0 0

)

=

O2,2.
Idempotent matrix: If AA = A (A must be square), then A is an idempotent matrix.

Both On,n and In are idempotent. Another example is A =

(

0.5 0.5
0.5 0.5

)

.

Transpose of a matrix: For a matrix A with size m × n, we define its transpose A′

as a matrix with size n ×m such that the ij-th element of A′ is equal to the ji-th
element of A, a′

ij = aji.

A =

(

1 2 3
4 5 6

)

then A′ =





1 4
2 5
3 6



.

Properties of matrix transposition:
(1) (A′)′ = A, (2) (A + B)′ = A′ + B′, (3) (AB)′ = B′A′.
Symmetrical matrix: If A = A′ (A must be square), then A is symmetrical. The
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condition for A to be symmetrical is that aij = aji. Both On,n and In are symmetrical.

Another example is A =

(

1 2
2 3

)

.

Projection matrix: A symmetrical idempotent matrix is a projection matrix.
Diagonal matrix: A symmetrical matrix A is diagonal if aij = 0 for all i 6= j. Both

In and On,n are diagonal. Another example is A =





λ1 0 0
0 λ2 0
0 0 λ3





2.5 Inverse of a square matrix

We are going to define the inverse of a square matrix A ∈M(n).
Scalar: aa−1 = a−1a = 1⇒ if b satisfies ab = ba = 1 then b = a−1.
Definition of A−1: If there exists a B ∈ M(n) such that AB = BA = In, then we
define A−1 = B.
Examples: (1) Since II = I, I−1 = I. (2) On,nB = On,n ⇒ O−1

n,n does not exist. (3)

If A =

(

a1 0
0 a2

)

, a1, a2 6= 0, then A−1 =

(

a−1
1 0
0 a−1

2

)

. (4) If a1 = 0 or a2 = 0,

then A−1 does not exist.
Singular matrix: A square matrix whose inverse matrix does not exist.
Non-singular matrix: A is non-singular if A−1 exists.

Properties of matrix inversion:
Let A, B ∈M(n), (1) (A−1)−1 = A, (2) (AB)−1 = B−1A−1, (3) (A′)−1 = (A−1)′.

2.6 Problems

1. Let A = I −X(X ′X)−1X ′.
(a) If the dimension of X is m× n, what must be the dimension of I and A.
(b) Show that matrix A is idempotent.

2. Let A and B be n× n matrices and I be the identity matrix.
(a) (A + B)3 = ?
(b) (A + I)3 = ?

3. Let B =

((

0.5 0.5
0.5 0.5

))

, U = (1, 1)′, V = (1,−1)′, and W = aU + bV , where

a and b are real numbers. Find BU , BV , and BW . Is B idempotent?

4. Suppose A is a n× n nonsingular matrix and P is a n× n idempotent matrix.
Show that APA−1 is idempotent.

5. Suppose that A and B are n×n symmetric idempotent matrices and AB = B.
Show that A− B is idempotent.

6. Calculate (x1, x2)

(

3 2
2 5

)(

x1

x2

)

.
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7. Let I =

(

1 0
0 1

)

and J =

(

0 1
−1 0

)

.

(a) Show that J2 = −I.

(b) Make use of the above result to calculate J3, J4, and J−1.

(c) Show that (aI + bJ)(cI + dJ) = (ac− bd)I + (ad + bc)J .

(d) Show that (aI + bJ)−1 =
1

a2 + b2
(aI − bJ) and [(cos θ)I + (sin θ)J ]−1 =

(cos θ)I − (sin θ)J .
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3 Vector Space and Linear Transformation

In the last section, we regard a matrix simply as an array of numbers. Now we are
going to provide some geometrical meanings to a matrix.
(1) A matrix as a collection of column (row) vectors
(2) A matrix as a linear transformation from a vector space to another vector space

3.1 Vector space, linear combination, and linear independence

Each point in the m-dimensional Euclidean space can be represented as a m-dimensional

column vector v =







v1
...

vm






, where each vi represents the i-th coordinate. Two points

in the m-dimensional Euclidean space can be added according to the rule of matrix
addition. A point can be multiplied by a scalar according to the rule of scalar multi-
plication.

Vector addition:







v1
...

vm






+







w1
...

wm






=







v1 + w1
...

vm + wm






.

Scalar multiplication: α







v1
...

vm






=







αv1
...

αvm






.

- x1

6
x2

�
�

�
�

�
�3

v1













�














�

v2

�
�

�
�

�
�

�
�

�
�� v1 + v2

- x1

6
x2

�
�

�
�

��
v �

�
�

�
��

2v

With such a structure, we say that the m-dimensional Euclidean space is a vec-
tor space.
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m-dimensional column vector space: Rm =

















v1
...

vm






, vi ∈ R











.

We use superscripts to represent individual vectors.

A m× n matrix: a collection of n m-dimensional column vectors:










a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn











=





























a11

a21
...

am1











,











a12

a22
...

am2











, . . . ,











a1n

a2n
...

amn





























Linear combination of a collection of vectors {v1, . . . , vn}: w =

n
∑

i=1

αiv
i, where

(α1, . . . , αn) 6= (0, . . . , 0).

Linear dependence of {v1, . . . , vn}: If one of the vectors is a linear combination of
others, then the collection is said to be linear dependent. Alternatively, the collection
is linearly dependent if (0, . . . , 0) is a linear combination of it.

Linear independence of {v1, . . . , vn}: If the collection is not linear dependent, then
it is linear independent.

Example 1: v1 =





a1

0
0



, v2 =





0
a2

0



, v3 =





0
0
a3



, a1a2a3 6= 0.

If α1v
1 + α2v

2 + α3v
3 = 0 then (α1, α2, α3) = (0, 0, 0). Therefore, {v1, v2, v3} must be

linear independent.

Example 2: v1 =





1
2
3



, v2 =





4
5
6



, v3 =





7
8
9



.

2v2 = v1 + v3. Therefore, {v1, v2, v3} is linear dependent.

Example 3: v1 =





1
2
3



, v2 =





4
5
6



.

α1v
1 + α2v

2 =





α1 + 4α2

2α1 + 5α2

3α1 + 6α2



 =





0
0
0



 ⇒ α1 = α2 = 0. Therefore, {v1, v2} is

linear independent.

Span of {v1, . . . , vn}: The space of linear combinations.
If a vector is a linear combination of other vectors, then it can be removed without
changing the span.
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Rank







v11 . . . v1n
...

. . .
...

vm1 . . . vmn






≡ Dimension(Span{v1, . . . , vn}) = Maximum # of indepen-

dent vectors.

3.2 Linear transformation

Consider a m × n matrix A. Given x ∈ Rn, Ax ∈ Rm. Therefore, we can define a
linear transformation from Rn to Rm as f(x) = Ax or

f : Rn→Rm, f(x) =







y1
...

ym






=







a11 . . . a1n
...

. . .
...

am1 . . . amn













x1
...

xn






.

It is linear because f(αx + βw) = A(αx + βw) = αAx + βAw = αf(x) + βf(w).

Standard basis vectors of Rn: e1 ≡











1
0
...
0











, e2 ≡











0
1
...
0











, . . . , en ≡











0
0
...
1











.

Let vi be the i-th column of A, vi =







a1i
...

ami






.

vi = f(ei):





a11

. . .
am1



 =







a11 . . . a1n
...

. . .
...

am1 . . . amn













1
...
0






⇒ v1 = f(e1) = Ae1, etc.

Therefore, vi is the image of the i-th standard basis vector ei under f .
Span{v1, . . . , vn} = Range space of f(x) = Ax ≡ R(A).
Rank(A) ≡ dim(R(A)).
Null space of f(x) = Ax: N(A) ≡ {x ∈ Rn, f(x) = Ax = 0}.
dim(R(A)) + dim(N(A)) = n.

Example 1: A =

(

1 0
0 2

)

. N(A) =

{(

0
0

)}

, R(A) = R2, Rank(A) = 2.

Example 2: B =

(

1 1
1 1

)

. N(B) =

{(

k
−k

)

, k ∈ R

}

, R(B) =

{(

k
k

)

, k ∈ R

}

,

Rank(B) = 1.

The multiplication of two matrices can be interpreted as the composition of two
linear transformations.

f : Rn→Rm, f(x) = Ax, g : Rp→Rn, g(y) = By, ⇒ f(g(x)) = A(By), f◦g : Rp→Rm.
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The composition is meaningful only when the dimension of the range space of g(y)
is equal to the dimension of the domain of f(x), which is the same condition for the
validity of the matrix multiplication.

Every linear transformation f : Rn→Rm can be represented by f(x) = Ax for
some m× n matrix.

3.3 Inverse transformation and inverse of a square matrix

Consider now the special case of square matrices. Each A ∈ M(n) represents a linear
transformation f : Rn→Rn.
The definition of the inverse matrix A−1 is such that AA−1 = A−1A = I. If we re-
gard A as a linear transformation from Rn→Rn and I as the identity transformation
that maps every vector (point) into itself, then A−1 is the inverse mapping of A. If
dim(N(A)) = 0, then f(x) is one to one.
If dim(R(A)) = n, then R(A) = Rn and f(x) is onto.
⇒ if Rank(A) = n, then f(x) is one to one and onto and there exits an inverse mapping
f−1 : Rn→Rn represented by a n×n square matrix A−1. f−1f(x) = x⇒ A−1Ax = x.
⇒ if Rank(A) = n, then A is non-singular.
if Rank(A) < n, then f(x) is not onto, no inverse mapping exists, and A is singular.

Examples: Rank





a1 0 0
0 a2 0
0 0 a3



 = 3 and Rank





1 4 7
2 5 8
3 6 9



 = 2.

Remark: On,n represents the mapping that maps every point to the origin. In rep-
resents the identity mapping that maps a point to itself. A projection matrix repre-

sents a mapping that projects points onto a linear subspace of Rn, eg.,

(

0.5 0.5
0.5 0.5

)

projects points onto the 45 degree line.

- x1

6
x2

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

@
@

@
@

@
@

@
@I

@
@

@
@

@
@

@
@R

@@R

x

Ax

x =

(

1
2

)

Ax =

(

.5 .5

.5 .5

)(

1
2

)

=

(

1.5
1.5

)

x′ =

(

k
−k

)

, Ax′ =

(

0
0

)
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3.4 Problems

1. Let B =





0 1 0
0 0 1
0 0 0





and TB the corresponding linear transformation TB : R3 → R3, TB(x) = Bx,

where x =





x1

x2

x3



 ∈ R3.

(a) Is v1 =





a
0
0



, a 6= 0, in the null space of TB? Why or why not?

(b) Is v2 =





0
0
b



, b 6= 0, in the range space of TB? Why or why not? How

about v3 =





c
d
0



?

(c) Find Rank(B).

2. Let A be an idempotent matrix.

(a) Show that I − A is also idempotent.

(b) Suppose that x 6= 0 is in the null space of A, i.e., Ax = 0. Show that x
must be in the range space of I −A, i.e., show that there exists a vector y
such that (I −A)y = x. (Hint: Try y = x.)

(c) Suppose that y is in the range space of A. Show that y must be in the null
space of I − A.

(d) Suppose that A is n × n and Rank[A] = n − k, n > k > 0. What is the
rank of I − A?

3. Let I =





1 0 0
0 1 0
0 0 1



, A =





1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3



, x =





1
a
b



, y =





1
α
β



, and

B = I − A.

(a) Calculate AA and BB.

(b) If y is in the range space of A, what are the values of α and β?

(c) What is the dimension of the range space of A?

(d) Determine the rank of A.

(e) Suppose now that x is in the null space of B. What should be the values
of a and b?

(f) What is the dimension of the null space of B?



15

(g) Determine the rank of B?

4. Let A =

(

1/5 2/5
2/5 4/5

)

and B =





1 1 1
0 1 1
0 0 1



.

(a) Determine the ranks of A and B.

(b) Determine the null space and range space of each of A and B and explain
why.

(c) Determine whether they are idempotent.
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4 Determinant, Inverse Matrix, and Cramer’s rule

In this section we are going to derive a general method to calculate the inverse of
a square matrix. First, we define the determinant of a square matrix. Using the
properties of determinants, we find a procedure to compute the inverse matrix. Then
we derive a general procedure to solve a simultaneous equation.

4.1 Permutation group

A permutation of {1, 2, . . . , n} is a 1-1 mapping of {1, 2, . . . , n} onto itself, written as

π =

(

1 2 . . . n
i1 i2 . . . in

)

meaning that 1 is mapped to i1, 2 is mapped to i2, . . ., and

n is mapped to in. We also write π = (i1, i2, . . . , ın) when no confusing.

Permutation set of {1, 2, . . . , n}: Pn ≡ {π = (i1, i2, . . . , in) : π is a permutation}.
P2 = {(1, 2), (2, 1)}.
P3 = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}.
P4: 4! = 24 permutations.

Inversions in a permutation π = (i1, i2, . . . , in): If there exist k and l such that
k < l and ik > il, then we say that an inversion occurs.
N(i1, i2, . . . , ın): Total number of inversions in (i1, i2, . . . , in).
Examples: 1. N(1, 2) = 0, N(2, 1) = 1.

2. N(1, 2, 3) = 0, N(1, 3, 2) = 1, N(2, 1, 3) = 1,
N(2, 3, 1) = 2, N(3, 1, 2) = 2, N(3, 2, 1) = 3.

4.2 Determinant

Determinant of A =











a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann











:

|A| ≡
∑

(i1,i2,...,in)∈Pn

(−1)N(i1,i2,...,in)a1i1a2i2 . . . anin .

n = 2:

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

= (−1)N(1,2)a11a22 + (−1)N(2,1)a12a21 = a11a22 − a12a21.

n = 3:

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

=

(−1)N(1,2,3)a11a22a33 + (−1)N(1,3,2)a11a23a32 + (−1)N(2,1,3)a12a21a33 +
(−1)N(2,3,1)a12a23a31 + (−1)N(3,1,2)a13a21a32 + (−1)N(3,2,1)a13a22a31

= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31.
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a11 a12

a21 a22

@
@R�
��n = 2:

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

@
@R

@
@R

@
@R

@
@R

@
@R

@
@R

�
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�
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�
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�
��

�
��

�
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n = 3:

4.3 Properties of determinant

Property 1: |A′| = |A|.
Proof: Each term of |A′| corresponds to a term of |A| of the same sign.
By property 1, we can replace “column vectors” in the properties below by “row vec-
tors”.
Since a n × n matrix can be regarded as n column vectors A = {v1, v2, . . . , vn}, we
can regard determinants as a function of n column vectors |A| = D(v1, v2, . . . , vn),
D : Rn×n→R.
By property 1, we can replace “column vectors” in the properties below by “row vec-
tors”.

Property 2: If two column vectors are interchanged, the determinant changes sign.
Proof: Each term of the new determinant corresponds to a term of |A| of opposite
sign because the number of inversion increases or decreases by 1.

Example:

∣

∣

∣

∣

1 2
3 4

∣

∣

∣

∣

= 1× 4− 2× 3 = −2,

∣

∣

∣

∣

2 1
4 3

∣

∣

∣

∣

= 2× 3− 1× 4 = 2,

Property 3: If two column vectors are identical, then the determinant is 0.
Proof: By property 2, the determinant is equal to the negative of itself, which is
possible only when the determinant is 0.

Property 4: If you add a linear combination of other column vectors to a column
vector, the determinant does not change.
Proof: Given other column vectors, the determinant function is a linear function of
vi: D(αvi + βwi; other vectors ) = αD(vi; other vectors ) + βD(wi; other vectors ).

Example:

∣

∣

∣

∣

1 + 5× 2 2
3 + 5× 4 4

∣

∣

∣

∣

=

∣

∣

∣

∣

1 2
3 4

∣

∣

∣

∣

+

∣

∣

∣

∣

5× 2 2
5× 4 4

∣

∣

∣

∣

=

∣

∣

∣

∣

1 2
3 4

∣

∣

∣

∣

+ 5 ×
∣

∣

∣

∣

2 2
4 4

∣

∣

∣

∣

=
∣

∣

∣

∣

1 2
3 4

∣

∣

∣

∣

+ 5× 0.

Submatrix: We denote by Aij the submatrix of A obtained by deleting the i-th
row and j-th column from A.
Minors: The determinant |Aij| is called the minor of the element aij .
Cofactors: Cij ≡ (−1)i+j|Aij | is called the cofactor of aij .
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Property 5 (Laplace theorem): Given i = ī, |A| =
n
∑

j=1

aījCīj.

Given j = j̄, |A| = ∑n
i=1 aij̄Cij̄.

Proof: In the definition of the determinant of |A|, all terms with aij can be put to-
gethere to become aijCij.

Example:

∣

∣

∣

∣

∣

∣

1 2 3
4 5 6
7 8 0

∣

∣

∣

∣

∣

∣

= 1×
∣

∣

∣

∣

5 6
8 0

∣

∣

∣

∣

− 2×
∣

∣

∣

∣

4 6
7 0

∣

∣

∣

∣

+ 3×
∣

∣

∣

∣

4 5
7 8

∣

∣

∣

∣

.

Property 6: Given i′ 6= ī,
n
∑

j=1

ai′jCīj = 0.

Given j′ 6= j̄, =
∑n

i=1 aij′Cij̄ = 0.
Therefore, if you multiply cofactors by the elements from a different row or column,
you get 0 instead of the determinant.
Proof: The sum becomes the determinant of a matrix with two identical rows (columns).

Example: 0 = 4×
∣

∣

∣

∣

5 6
8 0

∣

∣

∣

∣

− 5×
∣

∣

∣

∣

4 6
7 0

∣

∣

∣

∣

+ 6×
∣

∣

∣

∣

4 5
7 8

∣

∣

∣

∣

.

4.4 Computation of the inverse matrix

Using properties 5 and 6, we can calculate the inverse of A as follows.

1. Cofactor matrix: C ≡











C11 C12 . . . C1n

C21 C22 . . . C2n
...

...
. . .

...
Cn1 Cn2 . . . Cnn











.

2. Adjoint of A: Adj A ≡ C ′ =











C11 C21 . . . Cn1

C12 C22 . . . Cn2
...

...
. . .

...
C1n C2n . . . Cnn











.

3. ⇒ AC ′ = C ′A =











|A| 0 . . . 0
0 |A| . . . 0
...

...
. . .

...
0 0 . . . |A|











⇒ if |A| 6= 0 then 1
|A|C

′ = A−1.

Example 1: A =

(

a11 a12

a21 a22

)

then C =

(

a22 −a21

−a12 a11

)

.

A−1 =
1

|A|C
′ =

1

a11a22 − a12a21

(

a22 −a12

−a21 a11

)

; if |A| = a11a22 − a12a21 6= 0.

Example 2: A =





1 2 3
4 5 6
7 8 0



⇒ |A| = 27 6= 0 and

C11 =

∣

∣

∣

∣

5 6
8 0

∣

∣

∣

∣

= −48, C12 = −
∣

∣

∣

∣

4 6
7 0

∣

∣

∣

∣

= 42, C13 =

∣

∣

∣

∣

4 5
7 8

∣

∣

∣

∣

= −3,
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C21 = −
∣

∣

∣

∣

2 3
8 0

∣

∣

∣

∣

= 24, C22 =

∣

∣

∣

∣

1 3
7 0

∣

∣

∣

∣

= −21, C23 = −
∣

∣

∣

∣

1 2
7 8

∣

∣

∣

∣

= 6,

C31 =

∣

∣

∣

∣

2 3
5 6

∣

∣

∣

∣

= −3, C32 = −
∣

∣

∣

∣

1 3
4 6

∣

∣

∣

∣

= 6, C33 =

∣

∣

∣

∣

1 2
4 5

∣

∣

∣

∣

= −3,

C =





−48 42 −3
24 −21 6
−3 6 −3



, C ′ =





−48 24 −3
42 −21 6
−3 6 −3



, A−1 =
1

27





−48 24 −3
42 −21 6
−3 6 −3



.

If |A| = 0, then A is singular and A−1 does not exist. The reason is that |A| =

0⇒ AC ′ = 0n×n ⇒ C11







a11
...

an1






+ · · ·+Cn1







a1n
...

ann






=







0
...
0






. The column vectors

of A are linear dependent, the linear transformation TA is not onto and therefore an
inverse transformation does not exist.

4.5 Cramer’s rule

If |A| 6= 0 then A is non-singular and A−1 =
C ′

|A| . The solution to the simultaneous

equation Ax = b is x = A−1b =
C ′b

|A| .

Cramer’s rule: xi =

∑n
j=1 Cjbj

|A| =
|Ai|
|A| , where Ai is a matrix obtained by replacing

the i-th column of A by b, Ai = {v1, . . . , vi−1, b, vi+1, . . . , vn}.

4.6 Economic applications

Linear 2-market model:

(

a1 − b1 a2 − b2

α1 − β1 α2 − β2

)(

p1

p2

)

=

(

b0 − a0

β0 − α0

)

.

p1 =

∣

∣

∣

∣

b0 − a0 a2 − b2

β0 − α0 α2 − β2

∣

∣

∣

∣

∣

∣

∣

∣

a1 − b1 a2 − b2

α1 − β1 α2 − β2

∣

∣

∣

∣

, p2 =

∣

∣

∣

∣

a1 − b1 b0 − a0

α1 − β1 β0 − α0

∣

∣

∣

∣

∣

∣

∣

∣

a1 − b1 a2 − b2

α1 − β1 α2 − β2

∣

∣

∣

∣

.

Income determination model:





1 0 −b
0 1 0
1 1 −1









C
I
Y



 =





a
I(r)
0



.

C =

∣

∣

∣

∣

∣

∣

a 0 −b
I(r) 1 0
0 1 −1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 −b
0 1 0
1 1 −1

∣

∣

∣

∣

∣

∣

, I =

∣

∣

∣

∣

∣

∣

1 a −b
0 I(r) 0
1 0 −1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 −b
0 1 0
1 1 −1

∣

∣

∣

∣

∣

∣

, Y =

∣

∣

∣

∣

∣

∣

1 0 a
0 1 I(r)
1 1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 −b
0 1 0
1 1 −1

∣

∣

∣

∣

∣

∣

.
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IS-LM model: In the income determination model, we regard interest rate as given
and consider only the product market. Now we enlarge the model to include the
money market and regard interest rate as the price (an endogenous variable) deter-
mined in the money market.

good market: money market:
C = a + bY L = kY − lR
I = I0 − iR M = M̄

C + I + Ḡ = Y M = L
end. var: C, I, Y , R (interest rate), L(demand for money), M (money supply)
ex. var: Ḡ, M̄ (quantity of money). parameters: a, b, i, k, l.
Substitute into equilibrium conditions:

good market: money market endogenous variables:
a + bY + I0 − iR + Ḡ = Y , kY − lR = M̄ , Y , R

(

1− b i
k −l

)(

Y
R

)

=

(

a + I0 + Ḡ
M̄

)

Y =

∣

∣

∣

∣

a + I0 + Ḡ i
M̄ −l

∣

∣

∣

∣

∣

∣

∣

∣

1− b i
k −l

∣

∣

∣

∣

, R =

∣

∣

∣

∣

1− b a + I0 + Ḡ
k M̄

∣

∣

∣

∣

∣

∣

∣

∣

1− b i
k −l

∣

∣

∣

∣

.

Two-country income determination model: Another extension of the income
determination model is to consider the interaction between domestic country and the
rest of the world (foreign country).
domestic good market: foreign good market: endogenous variables:
C = a + bY C ′ = a′ + b′Y ′ C, I, Y ,
I = I0 I ′ = I ′

0 M (import),
M = M0 + mY M ′ = M ′

0 + m′Y ′ X (export),
C + I + X −M = Y C ′ + I ′ + X ′ −M ′ = Y ′ C ′, I ′, Y ′, M ′, X ′.

By definition, X = M ′ and X ′ = M . Substituting into the equilibrium conditions,

(1− b + m)Y −m′Y ′ = a + I0 + M ′
0 −M0 (1− b′ + m′)Y ′ −mY = a′ + I ′

0 + M0 −M ′
0.

(

1− b + m −m′

−m 1− b′ + m′

)(

Y
Y ′

)

=

(

a + I0 + M ′
0 −M0

a′ + I ′
0 + M0 −M ′

0

)

.

Y =

∣

∣

∣

∣

a + I0 + M ′
0 −M0 −m′

a′ + I ′
0 + M0 −M ′

0 1− b′ + m′

∣

∣

∣

∣

∣

∣

∣

∣

1− b + m −m′

−m 1− b′ + m′

∣

∣

∣

∣

Y ′ =

∣

∣

∣

∣

1− b + m a + I0 + M ′
0 −M0

−m a′ + I ′
0 + M0 −M ′

0

∣

∣

∣

∣

∣

∣

∣

∣

1− b + m −m′

−m 1− b′ + m′

∣

∣

∣

∣

.

4.7 Input-output table

Assumption: Technologies are all fixed proportional, that is, to produce one unit of
product Xi, you need aji units of Xj .
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IO table: A =











a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann











.

Column i represents the coefficients of inputs needed to produce one unit of Xi.

Suppose we want to produce a list of outputs x =











x1

x2
...

xn











, we will need a list of inputs

Ax =











a11x1 + a12x2 + . . . + a1nxn

a21x2 + a22x2 + . . . + a2nxn
...

an1x1 + an2x2 + . . . + annxn











. The net output is x−Ax = (I − A)x.

If we want to produce a net amount of d =











d1

d2
...

dn











, then since d = (I − A)x,

x = (I −A)−1d.

4.8 A geometric interpretation of determinants

Because of properties 2 and 4, the determinant function D(v1, . . . , vn) is called an
alternative linear n-form of Rn. It is equal to the volume of the parallelepiped formed
by the vectors {v1, . . . , vn}. For n = 2, |A| is the area of the parallelogram formed by
{(

a11

a12

)

,

(

a21

a22

)}

. See the diagram:

- x1

6
x2

�
�
�
�
�
�
�
�
���

v2

���������1 v1

|A| = Area of D

D

���������

�
�
�
�
�
�
�
�
��

If the determinant is 0, then the volume is 0 and the vectors are linearly dependent,
one of them must be a linear combination of others. Therefore, an inverse mapping
does not exist, A−1 does not exist, and A is singular.
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4.9 Rank of a matrix and solutions of Ax = d when |A| = 0

Rank(A) = the maximum # of independent vectors in A = {v1, . . . , vn} = dim(Range
Space of TA).
Rank(A) = the size of the largest non-singular square submatrices of A.

Examples: Rank

(

1 2
3 4

)

= 2. Rank





1 2 3
4 5 6
7 8 9



 = 2 because

(

1 2
4 5

)

is non-

singular.
Property 1: Rank(AB) ≤ min{Rank(A), Rank(B)}.
Property 2: dim(Null Space of TA) + dim(Range Space of TA) = n.

Consider the simultaneous equation Ax = d. When |A| = 0, there exists a row of
A that is a linear combination of other rows

and Rank(A) < n. First, form the augmented matrix M ≡ [A
...d] and calculate

the rank of M . There are two cases.

Case 1: Rank(M) = Rank (A).
In this case, some equations are linear combinations of others (the equations are de-
pendent) and can be removed without changing the solution space. There will be
more variables than equations after removing these equations. Hence, there will be
infinite number of solutions.

Example:

(

1 2
2 4

)(

x1

x2

)

=

(

3
6

)

. Rank(A) = Rank

(

1 2
2 4

)

= 1 = Rank(M) =

Rank

(

1 2 3
2 4 6

)

.

The second equation is just twice the first equation and can be discarded. The so-

lutions are

(

x1

x2

)

=

(

3− 2k
k

)

for any k. On x1-x2 space, the two equations are

represented by the same line and every point on the line is a solution.

Case 2: Rank(M) = Rank(A) + 1.
In this case, there exists an equation whose LHS is a linear combination of the LHS
of other equations but whose RHS is different from the same linear combination of
the RHS of other equations. Therefore, the equation system is contraditory and there
will be no solutions.

Example:

(

1 2
2 4

)(

x1

x2

)

=

(

3
7

)

. Rank(A) = Rank

(

1 2
2 4

)

= 1 < Rank(M) =

Rank

(

1 2 3
2 4 7

)

= 2.

Multiplying the first equation by 2, 2x1 + 4x2 = 6, whereas the second equation

says 2x1 + 4x2 = 7. Therefore, it is impossible to have any

(

x1

x2

)

satisfying both

equations simultaneously. On x1-x2 space, the two equations are represented by two
parallel lines and cannot have any intersection points.
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4.10 Problems

1. Suppose v1 = (1, 2, 3)′, v2 = (2, 3, 4)′, and v3 = (3, 4, 5)′. Is {v1, v2, v3} linearly
independent? Why or why not?

2.. Find the inverse of A =

[

6 5
8 7

]

.

3. Given the 3 × 3 matrix A =





2 1 6
5 3 4
8 9 7



,

(a) calculate the cofactors C11, C21, C31,
(b) use Laplace expansion theorem to find |A|,
(c) and use Cramer’s rule to find X1 of the following equation system:





2 1 6
5 3 4
8 9 7









X1

X2

X3



 =





1
2
3



 .

(Hint: Make use of the results of (a).)
4. Use Cramer’s rule to solve the national-income model

C = a + b(Y − T ) (1)

T = −t0 + t1Y (2)

Y = C + I0 + G (3)

5. Let A =





0 1 0
0 0 1
0 0 0



.

(a) Find AA and AAA.
(b) Let x = (1, 2, 3)′, compute Ax, AAx, and AAAx.
(c) Find Rank[A], Rank[AA], and Rank[AAA].

6. Let X =





1 −1
1 0
1 1



.

(a) Find X ′X and (X ′X)−1.
(b) Compute X(X ′X)−1X ′ and I −X(X ′X)−1X ′.
(c) Find Rank[X(X ′X)−1X ′] and Rank[I −X(X ′X)−1X ′].

7. A =

[

1 2
3 6

]

, B =

[

1 2 1
3 6 1

]

, and C =

[

1 2 4
3 6 12

]

.

(a) Find the ranks of A, B, and C.
(b) Use the results of (a) to determine whether the following system has any solution:

[

1 2
3 6

] [

X1

X2

]

=

[

1
1

]

.

(c) Do the same for the following system:
[

1 2
3 6

] [

X1

X2

]

=

[

4
12

]

.
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8. Let A =

(

3 2
1 2

)

, I the 2× 2 identity matrix, and λ a scalar number.

(a) Find |A− λI|. (Hint: It is a quadratic function of λ.)
(b) Determine Rank(A − I) and Rank(A − 4I). (Remark: λ = 1 and λ = 4 are the
eigenvalues of A, that is, they are the roots of the equation |A− λI| = 0, called the
characteristic equation of A.)
(c) Solve the simultaneous equation system (A − I)x = 0 assuming that x1 = 1.
(Remark: The solution is called an eigenvector of A associated with the eigenvalue
λ = 1.)
(d) Solve the simultaneous equation system (A− 4I)y = 0 assuming that y1 = 1.
(e) Determine whether the solutions x and y are linearly independent.
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5 Differential Calculus and Comparative Statics

As seen in the last chapter, a linear economic model can be represented by a matrix
equation Ax = d(y) and solved using Cramer’s rule, x = A−1d(y). On the other hand,
a closed form solution x = x(y) for a nonlinear economic model is, in most applica-
tions, impossible to obtain. For general nonlinear economic models, we use differential
calculus (implicit function theorem) to obtain the derivatives of endogenous variables

with respect to exogenous variables
∂xi

∂yj

:

f1(x1, . . . , xn; y1, . . . , ym) = 0
...

fn(x1, . . . , xn; y1, . . . , ym) = 0

⇒













∂f1

∂x1

. . .
∂f1

∂xn
...

. . .
...

∂fn

∂x1

. . .
∂fn

∂xn

























∂x1

∂y1
. . .

∂x1

∂ym
...

. . .
...

∂xn

∂y1

. . .
∂xn

∂ym













= −













∂f1

∂y1
. . .

∂f1

∂ym
...

. . .
...

∂fn

∂y1

. . .
∂fn

∂ym













.

⇒













∂x1

∂y1

. . .
∂x1

∂ym
...

. . .
...

∂xn

∂y1
. . .

∂xn

∂ym













= −













∂f1

∂x1
. . .

∂f1

∂xn
...

. . .
...

∂fn

∂x1
. . .

∂fn

∂xn













−1











∂f1

∂y1

. . .
∂f1

∂ym
...

. . .
...

∂fn

∂y1
. . .

∂fn

∂ym













.

Each
∂xi

∂yj
represents a cause-effect relationship. If

∂xi

∂yj
> 0 (< 0), then xi will increase

(decrease) when yj increases. Therefore, instead of computing xi = xi(y), we want to

determine the sign of
∂xi

∂yj

for each i-j pair. In the following, we will explain how it

works.

5.1 Differential Calculus

x = f(y)⇒ f ′(y∗) =
dx

dy

∣

∣

∣

∣

y=y∗

≡ lim
∆y→0

f(y∗ + ∆y)− f(y∗)

∆y
.

On y-x space, x = f(y) is represented by a curve and f ′(y∗) represents the slope of
the tangent line of the curve at the point (y, x) = (y∗, f(y∗)).
Basic rules:

1. x = f(y) = k,
dx

dy
= f ′(y) = 0.

2. x = f(y) = yn,
dx

dy
= f ′(y) = nyn−1.

3. x = cf(y),
dx

dy
= cf ′(y).
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4. x = f(y) + g(y),
dx

dy
= f ′(y) + g′(y).

5. x = f(y)g(y),
dx

dy
= f ′(y)g(y) + f(y)g′(y).

6. x = f(y)/g(y),
dx

dy
=

f ′(y)g(y)− f(y)g′(y)

(g(y))2
.

7. x = eay,
dx

dy
= aeay. x = ln y,

dx

dy
=

1

y
.

8. x = sin y,
dx

dy
= cos y. x = cos y,

dx

dy
= − sin y.

Higher order derivatives:

f ′′(y) ≡ d

dy

(

d

dy
f(y)

)

=
d2

dy2
f(y), f ′′′(y) ≡ d

dy

(

d2

dy2
f(y)

)

=
d3

dy3
f(y).

5.2 Partial derivatives

In many cases, x is a function of several y’s: x = f(y1, y2, . . . , yn). The partial
derivative of x with respect to yi evaluated at (y1, y2, . . . , yn) = (y∗

1, y
∗
2, . . . , y

∗
n) is

∂x

∂yi

∣

∣

∣

∣

(y∗

1
,y∗

2
,...,y∗

n)

≡ lim
∆yi→0

f(y∗
1, . . . , y

∗
i + ∆yi, . . . , y

∗
n)− f(y∗

1, . . . , y
∗
i , . . . , y

∗
n)

∆yi
,

that is, we regard all other independent variables as constant (f as a function of yi

only) and take derivative.

9.
∂xn

1xm
2

∂x1
= nxn−1

1 xm
2 .

Higher order derivatives: We can define higher order derivatives as before. For the
case with two independent variables, there are 4 second order derivatives:

∂

∂y1

∂x

∂y1
=

∂2x

∂y2
1

,
∂

∂y2

∂x

∂y1
=

∂2x

∂y2∂y1
,

∂

∂y1

∂x

∂y2
=

∂2x

∂y1∂y2
,

∂

∂y2

∂x

∂y2
=

∂2x

∂y2
2

.

Notations: f1, f2, f11, f12, f21, f22.

∇f ≡







f1
...

fn






: Gradient vector of f .

H(f) ≡







f11 . . . f1n
...

. . .
...

fn1 . . . fnn






: second order derivative matrix, called Hessian of f .

Equality of cross-derivatives: If f is twice continously differentiable, then fij = fji

and H(f) is symmetric.

5.3 Economic concepts similar to derivatives

Elasticity of Xi w.r.t. Yj: EXi,Yj
≡ Yj

Xi

∂Xi

∂Yj

, the percentage change of Xi when Yj

increases by 1 %. Example: Qd = D(P ), EQd,P =
P

Qd

dQd

dP
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Basic rules: 1. EX1X2,Y = EX1,Y + EX2,Y , 2. EX1/X2,Y = EX1,Y − EX2,Y ,
3. EY,X = 1/EX,Y .

Growth rate of X = X(t): GX ≡
1

X

dX

dt
, the percentage change of X per unit of

time.

5.4 Mean value and Taylor’s Theorems

Continuity theorem: If f(y) is continuous on the interval [a, b] and f(a) ≤ 0, f(b) ≥ 0,
then there exists a c ∈ [a, b] such that f(c) = 0.
Rolle’s theorem: If f(y) is continuous on the interval [a, b] and f(a) = f(b) = 0, then
there exists a c ∈ (a, b) such that f ′(c) = 0.

Mean value theorem: If f(y) is continously differentiable on [a, b], then there exists a
c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a) or
f(b)− f(a)

b− a
= f ′(c).

Taylor’s Theorem: If f(y) is k + 1 times continously differentiable on [a, b], then for
each y ∈ [a, b], there exists a c ∈ (a, y) such that

f(y) = f(a)+f ′(a)(y−a)+
f ′′(a)

2!
(y−a)2 + . . .+

f (k)(a)

k!
(y−a)k +

f (k+1)(c)

(k + 1)!
(y−a)k+1.

5.5 Concepts of differentials and applications

Let x = f(y). Define ∆x ≡ f(y + ∆y)− f(y), called the finite difference of x.

Finite quotient:
∆x

∆y
=

f(y + ∆y)− f(y)

∆y
⇒ ∆x =

∆x

∆y
∆y.

dx, dy: Infinitesimal changes of x and y, dx, dy > 0 (so that we can divid something
by dx or by dy) but dx, dy < a for any positive real number a (so that ∆y→dy).
Differential of x = f(y): dx = df = f ′(y)dy.

Chain rule: x = f(y), y = g(z)⇒ x = f(g(z)),

dx = f ′(y)dy, dy = g′(z)dz ⇒ dx = f ′(y)g′(z)dz.
dx

dz
= f ′(y)g′(z) = f ′(g(z))g′(z).

Example: x = (z2 + 1)3 ⇒ x = y3, y = z2 + 1⇒ dx

dz
= 3y22z = 6z(z2 + 1)2.

Inverse function rule: x = f(y), ⇒ y = f−1(x) ≡ g(x),

dx = f ′(y)dy, dy = g′(x)dx⇒ dx = f ′(y)g′(x)dx.
dy

dx
= g′(x) =

1

f ′(y)
.

Example: x = ln y ⇒ y = ex ⇒ dx

dy
=

1

ex
=

1

y
.
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5.6 Concepts of total differentials and applications

Let x = f(y1, y2). Define ∆x ≡ f(y1 + ∆y1, y2 + ∆y2) − f(y1, y2), called the finite
difference of x.

∆x = f(y1 + ∆y1, y2 + ∆y2)− f(y1, y2)

= f(y1 + ∆y1, y2 + ∆y2)− f(y1, y2 + ∆y2) + f(y1, y2 + ∆y2)− f(y1, y2)

=
f(y1 + ∆y1, y2 + ∆y2)− f(y1, y2 + ∆y2)

∆y1

∆y1 +
f(y1, y2 + ∆y2)− f(y1, y2)

∆y2

∆y2

dx = f1(y1, y2)dy1 + f2(y1, y2)dy2.

dx, dy =







dy1
...

dyn






: Infinitesimal changes of x (endogenous), y1, . . . , yn (exogenous).

Total differential of x = f(y1, . . . , yn):

dx = df = f1(y1, . . . , yn)dy1+. . .+fn(y1, . . . , yn)dyn = (f1, . . . , fn)







dy1
...

dyn






= (∇f)′dy.

Implicit function rule:
In many cases, the relationship between two variables are defined implicitly. For
example, the indifference curve U(x1, x2) = Ū defines a relationship between x1 and

x2. To find the slope of the curve
dx2

dx1
, we use implicit function rule.

dU = U1(x1, x2)dx1 + U2(x1, x2)dx2 = dŪ = 0⇒;
dx2

dx1
= −U1(x1, x2)

U2(x1, x2)
.

Example: U(x1, x2) = 3x
1
3
1 + 3x

1
3
2 = 6 defines an indifference curve passing through

the point (x1, x2) = (1, 1). The slope (Marginal Rate of Substitution) at (1, 1) can be
calculated using implicit function rule.

dx2

dx1
= −U1

U2
= −x

− 2

3

1

x
− 2

3

2

= −1

1
= −1.

Multivariate chain rule:

x = f(y1, y2), y1 = g1(z1, z2), y2 = g2(z1, z2), ⇒ x = f(g1(z1, z2), g
2(z1, z2)) ≡ H(z1, z2).

We can use the total differentials dx, dy1, dy2 to find the derivative
∂x

∂z1

.

dx = (f1, f2)

(

dy1

dy2

)

= (f1, f2)

(

g1
1 g1

2

g2
1 g2

2

)(

dz1

dz2

)

= (f1g
1
1+f2g

2
1, f1g

1
2+f2g

2
2)

(

dz1

dz2

)

.
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⇒ ∂x

∂z1
=

∂H

∂z1
= f1g

1
1 + f2g

2
1,

∂x

∂z2
=

∂H

∂z2
= f1g

1
2 + f2g

2
2.

Example: x = y6
1y

7
2, y1 = 2z1 + 3z2, y2 = 4z1 + 5z2,

∂x

∂z1

= 6y5
1y

7
2(2) + 7y6

1y
6
2(4).

Total derivative:

x = f(y1, y2), y2 = h(y1), x = f(y1, h(y1)) ≡ g(y1),

⇒ dx = f1dy1 + f2dy2 = f1dy1 + f2h
′dy1 = (f1 + f2h

′)dy1.

Total derivative:
dx

dy1

∣

∣

∣

∣

y2=h(y1)

= f1 + f2h
′.

Partial derivative (direct effect of y1 on x):
∂x

∂y1
=

∂f

∂y1
= f1(y1, y2).

Indirect effect through y2:
∂x

∂y2

dy2

dy1

= f2h
′.

Example: Given the utility function U(x1, x2) = 3x
1
3
1 + 3x

1
3
2 , the MRS at a point

(x1, x2) is m(x1, x2) =
dx2

dx1

= −U1(x1, x2)

U2(x1, x2)
= −x

− 2

3

1

x
− 2

3

2

. The rate of change of MRS

w.r.t. x1 along the indifference curve passing through (1, 1) is a total derivative

dm

dx1

∣

∣

∣

∣

3x
1/3

1
+3x

1/3

2
=6

(

=
d2x2

dx2
1

∣

∣

∣

∣

3x
1/3

1
+3x

1/3

2
=6

)

=
∂m

∂x1
+

∂m

∂x2

dx2

dx1
=

∂m

∂x1
+

∂m

∂x2

(

−x
− 2

3

1

x
− 2

3

2

)

.

5.7 Inverse function theorem

In Lecture 3, we discussed a linear mapping x = Ay and its inverse mapping y = A−1x
when |A| 6= 0.

(

x1

x2

)

=

(

a11 a12

a21 a22

)(

y1

y2

) (

y1

y2

)

=

(

a22

|A|
−a12

|A|
−a21

|A|
a11

|A|

)

(

x1

x2

)

.

Therefore, for a linear mapping with |A| 6= 0, an 1-1 inverse mapping exists and the
partial derivatives are given by the inverse matrix of A. For example, ∂x1/∂y1 = a11

where∂y1/∂x1 = a22

|A| etc. The idea can be generalized to nonlinear mappings.

A general nonlinear mapping from Rn to Rn, y =







y1
...

yn






→ x =







x1
...

xn






, is

represented by a vector function

x =







x1
...

xn






=







f 1(y1, . . . , yn)
...

fn(y1, . . . , yn)






≡ F (y).
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Jacobian matrix: JF (y) ≡













∂x1

∂y1
. . .

∂x1

∂yn
...

. . .
...

∂xn

∂y1
. . .

∂xn

∂yn













=







f 1
1 . . . f 1

n
...

. . .
...

fn
1 . . . fn

n






.

Jacobian:
∂(x1, . . . , xn)

∂(y1, . . . , yn)
≡ |JF (y)|.

Inverse function theorem: If x∗ = F (y∗) and |JF (y∗)| 6= 0 (JF (y∗) is non-singular),
then F (y) is invertible nearby x∗,

that is, there exists a function G(x) ≡







g1(x1, . . . , xn)
...

gn(x1, . . . , xn)






such that y = G(x) if

x = F (y). In that case, JG(x∗) = (JF (y∗))−1.
Reasoning:







dx1
...

dxn






=







f 1
1 . . . f 1

n
...

. . .
...

fn
1 . . . fn

n













dy1
...

dyn






⇒







dy1
...

dyn






=







g1
1 . . . g1

n
...

. . .
...

gn
1 . . . gn

n













dx1
...

dxn






=







f 1
1 . . . f 1

n
...

. . .
...

fn
1 . . . fn

n







−1





dx1
...

dxn







Example:

(

x1

x2

)

= F (r, θ) =

(

r cos θ
r sin θ

)

. JF (r, θ) =

(

cos θ −r sin θ
sin θ r cos θ

)

.

J = |JF | = r(cos2 θ + sin2 θ) = r > 0, ⇒ r =
√

x2
1 + x2

2, θ = tan−1 x2

x1
and

JG = (JF )−1. When r = 0, J = 0 and the mapping is degenerate, i.e., the whole set
{r = 0,−π ≤ θ < π} is mapped to the origin (0, 0), just like the case in Lecture 3
when the Null space is a line.

Notice that g1
1 6= 1/(f 1

1 ) in general.

5.8 Implicit function theorem and comparative statics

Linear model: If all the equations are linear, the model can be represtned in matrix
form as

Ax+By = c ⇔







a11 · · · a1n
...

. . .
...

an1 · · · ann













x1
...

xn






+







b11 · · · b1m
...

. . .
...

bn1 · · · anm













y1
...

ym






−







c1
...
cn






=







0
. . .

0






.

If |A| 6= 0, then the solution is given by x = −A−1(By + c). The derivative matrix
[∂xi/∂yj]ij = A−1B. Using total differentials of the equations, we can derive a similar
derivative matrix for general nonlinear cases.
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We can regard the LHS of a nonlinear economic model as a mapping from Rn+m

to Rn:






f1(x1, . . . , xn; y1, . . . , ym) = 0
...

fn(x1, . . . , xn; y1, . . . , ym) = 0






⇔ F (x; y) = 0.

Jacobian matrix: Jx ≡







f 1
1 . . . f 1

n
...

. . .
...

fn
1 . . . fn

n






.

Implicit function theorem: If F (x∗; y∗) = 0 and |Jx(x
∗; y∗)| 6= 0 (Jx(x

∗; y∗) is
non-singular), then F (x; y) = 0 is solvable nearby (x∗; y∗), that is, there exists a

function x =







x1
...

xn






= x(y) =







x1(y1, . . . , ym)
...

xn(y1, . . . , ym)






such that x∗ = x(y∗) and

F (x(y); y) = 0. In that case,












∂x1

∂y1
. . .

∂x1

∂ym
...

. . .
...

∂xn

∂y1

. . .
∂xn

∂ym













= −







f 1
1 . . . f 1

n
...

. . .
...

fn
1 . . . fn

n







−1













∂f 1

∂y1
. . .

∂f 1

∂ym
...

. . .
...

∂fn

∂y1

. . .
∂fn

∂ym













.

Reasoning:







df 1

...
dfn






=







0
...
0






⇒







f 1
1 . . . f 1

n
...

. . .
...

fn
1 . . . fn

n













dx1
...

dxn






+













∂f 1

∂y1
. . .

∂f 1

∂ym
...

. . .
...

∂fn

∂y1
. . .

∂fn

∂ym



















dy1
...

dym






= 0

⇒







dx1
...

dxn






= −







f 1
1 . . . f 1

n
...

. . .
...

fn
1 . . . fn

n







−1













∂f 1

∂y1
. . .

∂f 1

∂ym
...

. . .
...

∂fn

∂y1

. . .
∂fn

∂ym



















dy1
...

dym






.

Example: f 1 = x2
1x2 − y = 0, f 2 = 2x1 − x2 − 1 = 0, When y = 1, (x1, x2) = (1, 1)

is an equilibrium. To calculate
dx1

dy
and

dx2

dy
at the equilibrium we use the implicit

function theorem:






dx1

dy
dx2

dy






= −

(

f 1
1 f 1

2

f 2
1 f 2

2

)−1









∂f 1

∂y
∂f 2

∂y









= −
(

2x1x2 x2
1

2 −1

)−1( −1
0

)

= −
(

2 1
2 −1

)−1( −1
0

)

=

(

1/4
1/2

)

.
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5.9 Problems

1. Given the demand function Qd = (100/P )− 10, find the demand elasticity η.

2. Given Y = X2
1X2 + 2X1X

2
2 , find ∂Y/∂X1, ∂2Y/∂X2

1 , and ∂2Y/∂X1∂X2, and
the total differential DY .

3. Given Y = F (X1, X2)+f(X1)+g(X2), find ∂Y/∂X1, ∂2Y/∂X2
1 , and ∂2Y/∂X1∂X2.

4. Given the consumption function C = C(Y − T (Y )), find dC/dY .

5. Given that Q = D(q ∗ e/P ), find dQ/dP .

6. Y = X2
1X2, Z = Y 2 + 2Y − 2, use chain rule to derive ∂Z/∂X1 and ∂Z/∂X2.

7. Y1 = X1 +2X2, Y2 = 2X1 +X2, and Z = Y1Y2, use chain rule to derive ∂Z/∂X1

and ∂Z/∂X2.

8. Let U(X1, X2) = X1X
2
2 + X2

1X2 and X2 = 2X1 + 1, find the partial derivative
∂U/∂X1 and the total derivative dU/dX1.

9. X2 + Y 3 = 1, use implicit function rule to find dY/dX.

10. X2
1 + 2X2

2 + Y 2 = 1, use implicit function rule to derive ∂Y/∂X1 and ∂Y/∂X2.

11. F (Y1, Y2, X) = Y1 − Y2 + X − 1 = 0 and G(Y1, Y2, X) = Y 2
1 + Y 2

2 + X2 − 1 = 0.
use implicit function theorem to derive dY1/dX and dY2/dX.

12. In a Cournot quantity competition duopoly model with heterogeneous products,
the demand functions are given by

Q1 = a− P1 − cP2, Q2 = a− cP1 − P2; 1 ≥ c > 0.

(a) For what value of c can we invert the demand functions to obtain P1 and
P2 as functions of Q1 and Q2?

(b) Calculate the inverse demand functions P1 = P1(Q1, Q2) and P2 = P2(Q1, Q2).

(c) Derive the total revenue functions TR1(Q1, Q2) = P1(Q1, Q2)Q1 and TR2(Q1, Q2) =
P2(Q1, Q2)Q2.

13. In a 2-good market equilibrium model, the inverse demand functions are given
by

P1 = A1Q
α−1
1 Qβ

2 , P2 = A2Q
α
1 Qβ−1

2 ; α, β > 0.

(a) Calculate the Jacobian matrix

(

∂P1/∂Q1 ∂P1/∂Q2

∂P2/∂Q1 ∂P2/∂Q2

)

and Jacobian
∂(P1, P2)

∂(Q1, Q2)
.

What condition(s) should the parameters satisfy so that we can invert the
functions to obtain the demand functions?

(b) Derive the Jacobian matrix of the derivatives of (Q1, Q2) with respect to

(P1, P2),

(

∂Q1/∂P1 ∂Q1/∂P2

∂Q2/∂P1 ∂Q2/∂P2

)

.
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5.10 Proofs of important theorems of differentiation

Rolle’s theorem: If f(x) ∈ C[a, b], f ′(x) exists for all x ∈ (a, b), and f(a) = f(b) =
0, then there exists a c ∈ (a, b) such that f ′(c) = 0.
Proof:
Case 1: f(x) ≡ 0 ∀x ∈ [a, b]⇒ f ′(x) = 0 ∀x ∈ (a, b)./
Case 2: f(x) 6≡ 0 ∈ [a, b] ⇒ ∃e, c such that f(e) = m ≤ f(x) ≤ M = f(c) and
M > m. Assume that M 6= 0 (otherwise m 6= 0 and the proof is similar). It is easy
to see that f ′

−(c) ≥ 0 and f ′
+(c) ≤ 0. Therefore, f ′(c) = 0. Q.E.D.

Mean Value theorem: If f(x) ∈ C[a, b] and f ′(x) exists for all x ∈ (a, b). Then
there exists a c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a).

Proof:
Consider the function

φ(x) ≡ f(x)−
[

f(a) +
f(b)− f(a)

b− a
(x− a)

]

.

It is clear that φ(x) ∈ C[a, b] and φ′(x) exists for all x ∈ (a, b). Also, φ(a) = φ(b) = 0
so that the conditions of Rolle’s Theorem are satisfied for φ(x). Hence, there exists
a c ∈ (a, b) such that φ′(c) = 0, or

φ′(c) = f ′(c)− f(b)− f(a)

b− a
= 0 ⇒ f ′(c) =

f(b)− f(a)

b− a
= 0.

Q.E.D.

Taylor’s Theorem: If f(x) ∈ Cr[a, b] and f (r+1)(x) exists for all x ∈ (a, b). Then
there exists a c ∈ (a, b) such that

f(b) = f(a)+f ′(a)(b−a)+
1

2
f ′′(a)(b−a)2+. . .+

1

r!
f (r)(a)(b−a)r+

1

(r + 1)!
f (r+1)(c)(b−a)r+1.

Proof:
Define ξ ∈ R

(b− a)r+1

(r + 1)!
ξ ≡ f(b)−

[

f(a) + f ′(a)(b− a) +
1

2
f ′′(a)(b− a)2 + . . . +

1

r!
f (r)(a)(b− a)r

]

.

Consider the function

φ(x) ≡ f(b)−
[

f(x) + f ′(x)(b− x) +
1

2
f ′′(x)(b− x)2 + . . . +

1

r!
f (r)(x)(b− x)r +

ξ

(r + 1)!
(b− x)r+1

]

.
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It is clear that φ(x) ∈ C[a, b] and φ′(x) exists for all x ∈ (a, b). Also, φ(a) = φ(b) = 0
so that the conditions of Rolle’s Theorem are satisfied for φ(x). Hence, there exists
a c ∈ (a, b) such that φ′(c) = 0, or

φ′(c) =
ξ − f (r+1)(c)

r!
= 0 ⇒ f (r+1)(c) = ξ.

Q.E.D.

Inverse Function Theorem: Let E ⊆ Rn be an open set. Suppose f : E → Rn

is C1(E), a ∈ E, f(a) = b, and A = J(f(a)), |A| 6= 0. Then there exist open sets
U, V ⊂ Rn such that a ∈ U , b ∈ V , f is one to one on U , f(U) = V , and f−1 : V → U
is C1(U).
Proof:
(1. Find U .) Choose λ ≡ |A|/2. Since f ∈ C1(E), there exists a neighborhood U ⊆ E
with a ∈ U such that ‖J(f(x))−A‖ < λ.
(2. Show that f(x) is one to one in U .) For each y ∈ Rn define φy on E by
φy(x) ≡ x + A−1(y − f(x)). Notice that f(x) = y if and only if x is a fixed point of

φy. Since J(φy(x)) = I − A−1J(f(x)) = A−1[A− J(f(x))]⇒ ‖J(φy(x))‖ <
1

2
on U .

Therefore φy(x) is a contraction mapping and there exists at most one fixed point in
U . Therefore, f is one to one in U .
(3. V = f(U) is open so that f−1 is continuous.) Let V = f(U) and y0 = f(x0) ∈ V
for x0 ∈ U . Choose an open ball B about x0 with radius ρ such that the closure
[B] ⊆ U . To prove that V is open, it is enough to show that y ∈ V whenever
‖y − y0‖ < λρ. So fix y such that ‖y − y0‖ < λρ. With φy defined above,

‖φy(x0)− x0‖ = ‖A−1(y − y0)‖ < ‖A−1‖λρ =
ρ

2
.

If x ∈ [B] ⊆ U , then

‖φy(x)− x0‖ ≤ ‖φy(x)− φy(x0)‖+ ‖φy(x0)− x0‖ <
1

2
‖x− x0‖+

ρ

2
≤ ρ.

That is, φy(x) ∈ [B]. Thus, φy(x) is a contraction of the complete space [B] into itself.
Hence, φy(x) has a unique fixed point x ∈ [B] and y = f(x) ∈ f([B]) ⊂ f(U) = V .
(4. f−1 ∈ C−1.) Choose y1, y2 ∈ V , there exist x1, x2 ∈ U such that f(x1) = y1,
f(x2) = y2.

φy(x2)− φy(x1) = x2 − x1 + A−1(f(x1)− f(x2)) = (x2 − x1)−A−1(y2 − y1).

⇒ ‖(x2−x1)−A−1(y2−y1)‖ ≤
1

2
‖x2−x1‖ ⇒

1

2
‖x2−x1‖ ≤ ‖A−1(y2−y1)‖ ≤

1

2λ
‖y2−y1‖

or ‖x2 − x1‖ ≤
1

λ
‖y2 − y1‖. It follows that (f ′)−1 exists locally about a. Since

f−1(y2)− f−1(y1)− (f ′)−1(y1)(y2 − y1) = (x2 − x1)− (f ′)−1(y1)(y2 − y1)

= −(f ′)−1(y1)[−f ′(x1)(x2 − x1) + f(x2)− f(x1)],
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We have

‖f−1(y2)− f−1(y1)− (f ′)−1(y1)(y2 − y1)‖
‖y2 − y1‖

≤ ‖(f
′)−1‖
λ

‖f(x2)− f(x1)− f ′(x1)(x2 − x1)‖
‖x2 − x1‖

.

As y2→y1, x2→x1. Hence (f 1−)′(y) = {f ′[f−1(y)]} for y ∈ V . Since f−1 is differ-
entiable, it is continuous. Also, f ′ is continuous and its inversion, where it exists, is
continuous. Therefore (f−1)′ is continuous or f−1 ∈ C1(V ). Q.E.D.

Implicit Function Theorem: Let E ⊆ R(n+m) be an open set and a ∈ Rn, b ∈ Rm,
(a, b) ∈ E. Suppose f : E → Rn is C1(E) and f(a, b) = 0, and J(f(a, b)) 6= 0. Then
there exist open sets A ⊂ Rn and B ⊂ Rm a ∈ A and b ∈ B, such that for each
x ∈ B, there exists a unique g(x) ∈ A such that f(g(x), x) = 0 and g : B → A is
C1(B).
Proof:
Defining F : Rn+m→Rn+m by F (x, y) ≡ (x, f(x, y)). Note that since

J(F (a, b)) =









(

∂xi

∂xj

)

1≤i,j≤n

(

∂xi

∂xn+j

)

1≤i≤n,1≤j≤m
(

∂fi

∂xj

)

1≤i≤m,1≤j≤n

(

∂fi

∂xn+j

)

1≤i,j≤m









=

(

I O
N M

)

,

|J(F (a, b))| = |M | 6= 0. By the Inverse Function Theorem there exists an open set
V ⊆ Rn+m containing F (a, b) = (a, 0) and an open set of the form A × B ⊆ E
containing (a, b), such that F : A × B→V has a C1 inverse F−1 : V→A × B. F−1

is of the form F−1(x, y) = (x, φ(x, y)) for some C1 function φ. Define the projection
π : Rn+m→Rm by π(x, y) = y. Then π ◦ F (x, y) = f(x, y). Therefore

f(x, φ(x, y)) = f ◦F−1(x, y) = (π ◦F ) ◦F−1(x, y) = π ◦ (F ◦F−1)(x, y) = π(x, y) = y

and f(x, φ(x, 0)) = 0. So, define g : A→B by g(x) = φ(x, 0). Q.E.D.
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6 Comparative Statics – Economic applications

6.1 Partial equilibrium model

Q = D(P, Y )
∂D

∂P
< 0,

∂D

∂Y
> 0 end. var: Q, P.

Q = S(P ) S ′(P ) > 0 ex. var: Y..

f 1(P, Q; Y ) = Q−D(P, Y ) = 0
df 1

dY
=

dQ

dY
− ∂D

∂P

dP

dY
− ∂D

∂Y
= 0

f 2(P, Q; Y ) = Q− S(P ) = 0
df 2

dY
=

dQ

dY
− S ′(P )

dP

dY
= 0

.

(

1 −∂D

∂P
1 −S ′(P )

)







dQ

dY
dP

dY






=

(

∂D

∂Y
0

)

, |J | =
∣

∣

∣

∣

∣

1 −∂D

∂P
1 −S ′(P )

∣

∣

∣

∣

∣

= −S ′(P ) +
∂D

∂P
< 0.

dQ

dY
=

∣

∣

∣

∣

∣

∂D

∂Y
−∂D

∂P
0 −S ′(P )

∣

∣

∣

∣

∣

|J | =
−∂D

∂Y
S ′(P )

|J | > 0,
dP

dY
=

∣

∣

∣

∣

∣

1
∂D

∂Y
1 0

∣

∣

∣

∣

∣

|J | =
−∂D

∂Y
|J | > 0.

6.2 Income determination model

C = C(Y ) 0 < C ′(Y ) < 1.
I = I(r) I ′(r) < 0 end. var. C, Y, I
Y = C + I + Ḡ ex. var. Ḡ, r.

Y = C(Y ) + I(r) + Ḡ⇒ dY = C ′(Y )dY + I ′(r)dr + dḠ⇒ dY =
I ′(r)dr + dḠ

1− C ′(Y )
.

∂Y

∂r
=

I ′(r)

1− C ′(Y )
< 0,

∂Y

∂Ḡ
=

1

1− C ′(Y )
> 0.

6.2.1 Income determination and trade

Consider an income determination model with import and export:

C = C(Y ) 1 > Cy > 0, I = Ī ,

M = M(Y, e) My > 0, Me < 0 X = X(Y ∗, e), Xy∗ > 0, Xe > 0

C + I + X −M = Y,

where import M is a function of domestic income and exchange rate e and export
X is a function of exchange rate and foreign income Y ∗, both are assumed here as
exogenous variables. Substituting consumption, import, and export functions into
the equilibrium condition, we have

C(Y )+Ī+X(Y ∗, e)−M(Y, e) = Y, ⇒F (Y, e, Y ∗) ≡ C(Y )+Ī+X(Y ∗, e)−M(Y, e)−Y = 0..
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Use implicit function rule to derive
∂Y

∂Ī
and determine its sign:

∂Y

∂Ī
= −FI

Fy

=
1

1− C ′(Y ) + My

.

Use implicit function rule to derive
∂Y

∂e
and determine its sign:

∂Y

∂e
= −Fe

Fy
=

Xe −Me

1− C ′(Y ) + My
.

Use implicit function rule to derive
∂Y

∂Y ∗ and determine its sign:

∂Y

∂Y ∗ = −Fy∗

Fy
=

Xy∗

1− C ′(Y ) + My
.

6.2.2 Interdependence of domestic and foreign income

Now extend the above income determination model to analyze the joint dependence
of domestic income and foreign income:

C(Y ) + Ī + X(Y ∗, e)−M(Y, e) = Y C∗(Y ∗) + Ī∗ + X∗(Y, e)−M∗(Y ∗, e) = Y ∗,

with a similar assumption on the foreigner’s consumption function: 1 > C∗
y∗ > 0.

Since domestic import is the same as foreigner’s export and domestic export is for-
eigner’s import, X∗(Y, e) = M(Y, e) and M∗(Y ∗, e) = X(Y ∗, e) and the system be-
comes:

C(Y ) + Ī + X(Y ∗, e)−M(Y, e) = Y C∗(Y ∗) + Ī∗ + M(Y, e)−X(Y ∗, e) = Y ∗,

Calculate the total differential of the system (Now Y ∗ becomes endogenous):

(

1− C ′ + My −Xy∗
−My 1− C∗′ + Xy∗

)(

dY
dY ∗

)

=

(

(Xe −Me)de + dĪ
(Me −Xe)de + dĪ∗

)

,

|J | =
∣

∣

∣

∣

1− C ′ + My −Xy∗
−My 1− C∗′ + Xy∗

∣

∣

∣

∣

= (1−C ′ + My)(1−C∗′ + My∗)−MyXy∗ > 0.

Use Cramer’s rule to derive
∂Y

∂e
and

∂Y ∗

∂e
and determine their signs:

dY =

∣

∣

∣

∣

(Xe −Me)de + dĪ −Xy∗
(Me −Xe)de + dĪ∗ 1− C∗′ + Xy∗

∣

∣

∣

∣

|J |

=
(Xe −Me)(1− C∗′ + Xy∗ −Xy∗)de + (1− C∗′ + Xy∗)dĪ + Xy∗dĪ∗

|J | ,
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dY ∗ =

∣

∣

∣

∣

1− C ′ + My (Xe −Me)de + dĪ
−My (Me −Xe)de + dĪ∗

∣

∣

∣

∣

|J |

=
−(Xe −Me)(1− C ′ + My −My)de + (1− C ′ + My)dĪ∗ + XydĪ

|J | .

∂Y

∂e
=

(Xe −Me)(1− C∗′)

|J | > 0,
∂Y ∗

∂e
=
−(Xe −Me)(1− C ′)

|J | < 0.

Derive
∂Y

∂Ī
and

∂Y ∗

∂Ī
and determine their signs:

∂Y

∂Ī
= −1− C∗′ + My∗

|J | > 0,
∂Y ∗

∂Ī
=

My

|J | < 0.

6.3 IS-LM model

C = C(Y ) 0 < C ′(Y ) < 1 Md = L(Y, r)
∂L

∂Y
> 0,

∂L

∂r
< 0

I = I(r) I ′(r) < 0 Ms = M̄
Y = C + I + Ḡ Md = Ms.

end. var: Y , C, I, r, Md, Ms. ex. var: Ḡ, M̄ .

Y − C(Y )− I(r) = Ḡ
L(Y, r) = M̄

⇒
(1− C ′(Y ))dY − I ′(r)dr = dḠ

∂L

∂Y
dY +

∂L

∂r
dr = dM̄

(

1− C ′ −I ′

LY Lr

)(

dY
dr

)

=

(

dḠ
dM̄

)

, |J | =
∣

∣

∣

∣

1− C ′ −I ′

LY Lr

∣

∣

∣

∣

= (1−C ′)Lr+I ′LY < 0.

dY =

∣

∣

∣

∣

dḠ −I ′

dM̄ Lr

∣

∣

∣

∣

|J | =
LrdḠ + I ′dM̄

|J | , dr =

∣

∣

∣

∣

1− C ′ dḠ
LY dM̄

∣

∣

∣

∣

|J | =
−LY dḠ + (1− C ′)dM̄

|J |
∂Y

∂Ḡ
=

Lr

|J | > 0,
∂Y

∂M̄
=

I ′

|J | > 0,
∂r

∂Ḡ
= −LY

|J | > 0,
∂r

∂M̄
=

(1− C ′)

|J | < 0.

6.4 Two-market general equilibrium model

Q1d = D1(P1, P2) D1
1 < 0, Q2d = D2(P1, P2) D2

2 < 0, D2
1 > 0.

Q1s = S̄1 Q2s = S2(P2) S ′
2(P2) > 0

Q1d = Q1s Q2d = Q2s

end. var: Q1, Q2, P1, P2. ex. var: S̄1.

D1(P1, P2) = S̄1 ⇒ D1
1dP1 + D1

2dP2 = dS̄1

D2(P1, P2)− S2(P2) = 0 D2
1dP1 + D2

2dP2 − S ′
2dP2 = 0.
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(

D1
1 D1

2

D2
1 D2

2 − S ′
2

)(

dP1

dP2

)

=

(

dS̄1

0

)

, |J | =
∣

∣

∣

∣

D1
1 D1

2

D2
1 D2

2 − S ′
2

∣

∣

∣

∣

= D1
1(D

2
2−S ′

2)−D1
2D

2
1.

Assumption: |D1
1| > |D1

2| and |D2
2| > |D2

1| (own-effects dominate), ⇒ |J | > 0.

dP1

dS̄1

=
D2

2 − S ′
2

|J | < 0,
dP2

dS̄1

=
−D2

1

|J | < 0

From Q1s = S̄1,
∂Q1

∂S̄1

= 1. To calculate
∂Q2

∂S̄1

, we have to use chain rule:

∂Q2

∂S̄1

= S ′
2

dP2

dS̄1

< 0.

6.4.1 Car market

Suppose we want to analyze the effect of the price of used cars on the market of
new cars. The demand for new cars is given by Qn = Dn(Pn; Pu), ∂Dn/∂Pn < 0
∂Dn/∂Pu > 0, where Qn is the quantity of new cars and Pn (Pu) the price of a new
(used) car. The supply function of new cars is Qn = S(Pn), S ′(Pn) > 0.

end. var: Pn, Qn. ex. var: Pu.

Dn(Pn; Pu) = S(Pn); ⇒ ∂Dn

∂Pn
dPn +

∂Dn

∂Pu
dPu = S ′(Pn)dPn.

dPn

dPu
=

∂Dn/∂Pu

S ′(Pn)− ∂Dn/∂Pn
> 0,

dQn

dPu
= S ′(Pn)

dPn

dPu
=

S ′(Pn)∂Dn/∂Pu

S ′(Pn)− ∂Dn/∂Pn
> 0.

The markets for used cars and for new cars are actually interrelated. The demand
for used cars is Qu = Du(Pu, Pn), ∂Dn/∂Pu < 0, ∂Dn/∂Pn > 0. In each period,
the quantity of used cars supplied is fixed, denoted by Q̄u. Instead of analyzing the
effects of a change in Pu on the new car market, we want to know how a change in
Q̄u affects both markets.

end. var: Pn, Qn, Pu, Qu. ex. var: Q̄u.

Qn = Dn(Pn, Pu), Qn = S(Pn); Qu = Du(Pu, Pn), Qu = Q̄u

⇒ Dn(Pn, Pu) = S(Pn), Du(Pu, Pn) = Q̄u; Dn
ndPn+Dn

udPu = S ′dPn, Du
ndPn+Du

udPu = Q̄
(

Dn
n − S ′ Dn

u

Du
n Du

u

)(

dPn

dPu

)

=

(

0
dQ̄u

)

, |J | =
∣

∣

∣

∣

Dn
n − S ′ Dn

u

Du
n Du

u

∣

∣

∣

∣

= (Dn
n−S ′)Du

u−Dn
uDu

n.

Assumption: |Dn
n| > |Dn

u | and |Du
u| > |Du

n| (own-effects dominate), ⇒ |J | > 0.

dPn

dQ̄u

=
−Dn

u

|J | < 0,
dPu

dQ̄u

=
Dn

n − S ′

|J | < 0.

From Qu = Q̄u,
∂Qu

∂Q̄u

= 1. To calculate
∂Qn

∂Q̄u

, we have to use chain rule:
∂Qn

∂Q̄u

=

S ′ dPn

dQ̄n

< 0.



40

6.5 Classic labor market model

L = h(w) h′ > 0 labor supply function

w = MPPL =
∂Q

∂L
= FL(K, L) FLK > 0, FLL < 0 labor demand function.

endogenous variables: L, w. exogenous variable: K.

L− h(w) = 0 ⇒ dL− h′(w)dw = 0
w − FL = 0 dw − FLLdL− FLKdK = 0

.

(

1 −h′(w)
−FLL 1

)(

dL
dw

)

=

(

0
FLKdK

)

, |J | =
∣

∣

∣

∣

1 −h′(w)
−FLL 1

∣

∣

∣

∣

= 1−h′(w)FLL > 0.

dL

dK
=

∣

∣

∣

∣

0 −h′(w)
FLK 1

∣

∣

∣

∣

|J | =
h′FLK

|J | > 0,
dw

dK
=

∣

∣

∣

∣

1 0
−FLL FLK

∣

∣

∣

∣

|J | =
FLK

|J | > 0.

6.6 Problem

1. Let the demand and supply functions for a commodity be

Q = D(P ) D′(P ) < 0
Q = S(P, t) ∂S/∂P > 0, ∂S/∂t < 0,

where t is the tax rate on the commodity.
(a) Derive the total differentail of each equation.
(b) Use Cramer’s rule to compute dQ/dt and dP/dt.
(c) Determine the sign of dQ/dt and dP/dt.
(d) Use the Q− P diagram to explain your results.

2. Suppose consumption C depends on total wealth W , which is predetermind, as
well as on income Y . The IS-LM model becomes

C = C(Y, W ) 0 < CY < 1 CW > 0 MS = M
I = I(r) I ′(r) < 0 Y = C + I
MD = L(Y, r) LY > 0 Lr < 0 MS = MD

(a) Which variables are endogenous? Which are exogenous?
(b) Which equations are behavioral/institutional, which are equilibrium condi-
tions?

The model can be reduced to

Y − C(Y, W )− I(r) = 0, L(Y, r) = M.

(c) Derive the total differential for each of the two equations.
(d) Use Cramer’s rule to derive the effects of an increase in W on Y and r, ie.,
derive ∂Y/∂W and ∂r/∂W .
(e) Determine the signs of ∂Y/∂W and ∂r/∂W .
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3. Consider a 2-industry (e.g. manufacturing and agriculture) general equilibrium
model. The demand for manufacturing product consists of two components:
private demand D1 and goverment demand G. The agricultural products have
only private demand D2. Both D1 and D2 depend only on their own prices.
Because each industry requires in its production process outputs of the other,
the supply of each commodity depends on the price of the other commodity as
well as on its own price. Therefore, the model may be written as follows:

Qd
1 = D1(P1) + G D′

1(P1) < 0,
Qd

2 = D2(P2) D′
2(P2) < 0,

Qs
1 = S1(P1, P2) S1

1 > 0, S1
2 < 0, S1

1 > |S1
2 |,

Qs
2 = S2(P1, P2) S2

1 < 0, S2
2 > 0, S2

2 > |S2
1 |,

Qd
1 = Qs

1,
Qd

2 = Qs
2.

(a) Which variables are endogenous? Which are exogenous?
(b) Which equations are behavioral? Which are definitional? Which are equi-
librium conditions?

4. The model can be reduced to

S1(P1, P2) = D1(P1) + G S2(P1, P2) = D2(P2)

(c) Compute the total differential of each equation.
(d) Use Cramer’s rule to derive ∂P1/∂G and ∂P2/∂G.
(e) Determine the signs of ∂P1/∂G and ∂P2/∂G.
(f) Compute ∂Q1/∂G and ∂Q2/∂G. (Hint: Use chain rule.)
(g) Give an economic interpretation of the results.

5. The demand functions of a 2-commodity market model are:

Qd
1 = D1(P1, P2) Qd

2 = D2(P1, P2).

The supply of the first commodity is given exogenously, ie., Qs
1 = S1. The

supply of the second commodity depends on its own price, Qs
2 = S2(P2). The

equilibrium conditions are:

Qd
1 = Qs

1, Qd
2 = Qs

2.

(a) Which variables are endogenous? Which are exogenous?
(b) Which equations are behavioral? Which are definitional? Which are equi-
librium conditions?

The model above can be reduced to :

D1(P1, P2)− S1 = 0 D2(P1, P2)− S2(P2) = 0
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Suppose that both commodities are not Giffen good (hence, Di
i < 0, i = 1, 2),

that each one is a gross substitute for the other (ie., Di
j > 0, i 6= j), that

|Di
i| > |Di

j |, and that S ′
2(P2) > 0.

(c) Calculate the total differential of each equation of the reduced model.
(d) Use Cramer’s rule to derive ∂P1/∂S1 and ∂P2/∂S1.
(e) Determine the signs of ∂P1/∂S1 and ∂P2/∂S1.
(f) Compute ∂Q1/∂S1 and ∂Q2/∂S1 and determine their signs.

6. The demand functions for fish and chicken are as follows:

Qd
F = DF (PF − PC), D′

F < 0

Qd
C = DC(PC − PF ), D′

C < 0

where PF , PC are price of fish and price of chicken respectively. The supply
of fish depends on the number of fishermen (N) as well as its price PF : Qs

F =
F (PF , N), FPF

> 0, FN > 0. The supply of chicken depends only on its price
PC : Qs

C = C(PC), C ′ > 0. The model can be reduced to

DF (PF − PC) = F (PF , N)
DC(PC − PF ) = C(PC)

(a) Find the total differential of the reduced system.
(b) Use Cramer’s rule to find dPF/dN and dPC/dN .
(c) Determine the signs of dPF /dN and dPC/dN . What is the economic mean-
ing of your results?
(d) Find dQC/dN .

7. In a 2-good market equilibrium model, the inverse demand functions are given
by

P1 = U1(Q1, Q2), P2 = U2(Q1, Q2);

where U1(Q1, Q2) and U2(Q1, Q2) are the partial derivatives of a utility function
U(Q1, Q2) with respect to Q1 and Q2, respectively.

(a) Calculate the Jacobian matrix

(

∂P1/∂Q1 ∂P1/∂Q2

∂P2/∂Q1 ∂P2/∂Q2

)

and Jacobian
∂(P1, P2)

∂(Q1, Q2)
.

What condition(s) should the parameters satisfy so that we can invert the
functions to obtain the demand functions?

(b) Derive the Jacobian matrix of the derivatives of (Q1, Q2) with respect to

(P1, P2),

(

∂Q1/∂P1 ∂Q1/∂P2

∂Q2/∂P1 ∂Q2/∂P2

)

.

(c) Suppose that the supply functions are

Q1 = a−1P1, Q2 = P2,

and Q∗
1 and Q∗

2 are market equilibrium quantities. Find the comparative

statics
dQ∗

1

da
and

dQ∗
2

da
. (Hint: Eliminate P1 and P2.)
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8. In a 2-good market equilibrium model with a sales tax of t dollars per unit on
product 1, the model becomes

D1(P1 + t, P2) = Q1 = S1(P1), D2(P1 + t, P2) = Q2 = S2(P2).

Suppose that Di
i < 0 and S ′

i > 0, |Di
i| > |Di

j|, i 6= j, i, j = 1, 2.

(a) Calculate dP2/dt.

(b) Calculate dQ2/dt.

(c) Suppose that Di
j > 0. Determine the signs of dP2/dt and dQ2/dt.

(d) Suppose that Di
j < 0. Determine the signs of dP2/dt and dQ2/dt.

(e) Explain your results in economics.
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7 Optimization

A behavioral equation is a summary of the decisions of a group of economic agents
in a model. A demand (supply) function summarizes the consumption (production)
decisions of consumers (producers) under different market prices, etc. The derivative
of a behavioral function represents how agents react when an independent variable
changes. In the last chapter, when doing comparative static analysis, we always
assumed that the signs of derivatives of a behavioral equation in a model are known.
For example, D′(P ) < 0 and S ′(P ) > 0 in the partial market equilibrium model,
C ′(Y ) > 0, I ′(r) < 0, Ly > 0, and Lr < 0 in the IS-LM model. In this chapter, we
are going to provide a theoretical foundation for the determination of these signs.

7.1 Neoclassic methodology

Neoclassic assumption: An agent, when making decisions, has an objective function
in mind (or has well defined preferences). The agent will choose a feasible decision
such that the objective function is maximized.
A consumer will choose the quantity of each commodity within his/her budget con-
straints such that his/her utility function is maximized. A producer will choose to
supply the quantity such that his profit is maximizaed.
Remarks: (1) Biological behavior is an alternative assumption, sometimes more ap-
propriate, (2) Sometimes an agent is actually a group of people with different per-
sonalities like a company and we have to use game theoretic equilibrium concepts to
characterize the collective behavior.

Maximization ⇒ Behavioral equations
Game equilibrium ⇒ Equilibrium conditions

x1, . . . , xn: variables determined by the agent (endogenous variables).
y1, . . . , ym: variables given to the agent (exogenous variables).
Objective function: f(x1, . . . , xn; y1, . . . , ym).
Opportunity set: the agent can choose only (x1, . . . , xn) such that (x1, . . . , xn; y1, . . . , ym) ∈
A ⊂ Rn+m. A is usually defined by inequality constriants.

max
x1,...,xn

f(x1, . . . , xn; y1, . . . , ym) subject to











g1(x1, . . . , xn; y1, . . . , ym) ≥ 0
...

gk(x1, . . . , xn; y1, . . . , ym) ≥ 0.

Solution (behavioral equations): xi = xi(y1, . . . , ym), i = 1, . . . , n (derived from FOC).
∂xi/∂yj: derived by the comparative static method (sometimes its sign can be deter-
mined from SOC).

Example 1: A consumer maximizes his utility function U(q1, q2) subject to the
budget constraint p1q1 + p2q2 = m ⇒ demand functions q1 = D1(p1, p2, m) and
q2 = D2(p1, p2, m).
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Example 2: A producer maximizes its profit Π(Q; P ) = PQ − C(Q) where C(Q) is
the cost of producing Q units of output ⇒ the supply function Q = S(P ).

one endogenous variable: this chapter.
n endogenous variables without constraints: next
n endogenous variables with equality constraints:
Nonlinear programming: n endogenous variables with inequality constraints
Linear programming: Linear objective function with linear inequality constraints
Game theory: more than one agents with different objective functions

7.2 Different concepts of maximization

Suppose that a producer has to choose a Q to maximize its profit π = F (Q):
maxQ F (Q). Assume that F ′(Q) and F ′′(Q) exist.
A local maximum Ql: there exists ǫ > 0 such that F (Ql) ≥ F (Q) for all Q ∈
(Ql − ǫ, Ql + ǫ).
A global maximum Qg: F (Qg) ≥ F (Q) for all Q.
A unique global maximum Qu: F (Qu) > F (Q) for all Q 6= Qu.

-Q

6
F

Ql

Ql: local max.
not global max

- Q

6
F

Qg: a global max.

but not unique

Qg

- Q

6
F

Qu: unique global max

Qu

The agent will choose only a global maximum as the quantity supplied to the mar-
ket. However, it is possible that there are more than one global maximum. In that
case, the supply quantity is not unique. Therefore, we prefer that the maximization
problem has a unique global maximum.
A unique global maximum must be a global maximum and a global maximum must
be a local maximum. ⇒ to find a global maximum, we first find all the local maxima.
One of them must be a global maximum, otherwise the problem does not have a
solution (the maximum occurs at∞.) We will find conditions (eg., increasing MC or
decreasing MRS) so that there is only one local maximum which is also the unique
global maximum.

7.3 FOC and SOC for a local maximum

At a local maximum Ql, the slope of the graph of F (Q) must be horizontal F ′(Ql) = 0.
This is called the first order condition (FOC) for a local maximum.
A critical point Qc: F ′(Qc) = 0.
A local maximum must be a critical point but a critical point does not have to be a
local maximum.
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-Q

6
F

F ′′(Qc) < 0

local max.

Qc

- Q

6
F

F ′′(Qc) > 0

local min.

Qc

- Q

6
F

F ′′(Qc) = 0

degenerate

Qc

A degenerate critical point: F ′(Q) = F ′′(Q) = 0.
A non-degenerate critical point: F ′(Q) = 0, F ′′(Q) 6= 0.
A non-degenerate critical point is a local maximum (minimum) if F ′′(Q) < 0 (F ′′(Q) >
0).

FOC: F ′(Ql) = 0 SOC: F ′′(Ql) < 0

Example: F (Q) = −15Q+9Q2−Q3, F ′(Q) = −15+18Q−3Q2 = −3(Q−1)(Q−5).
There are two critical points: Q = 1, 5. F ′′(Q) = 18 − 6Q, F ′′(1) = 12 > 0, and
F ′′(5) = −12 < 0. Therefore, Q = 5 is a local maximum. It is a global maximum for
0 ≤ Q <∞.

Remark 1 (Degeneracy): For a degenerate critical point, we have to check higher
order derivatives. If the lowest order non-zero derivative is of odd order, then it is a
reflect point; eg., F (Q) = (Q−5)3, F ′(5) = F ′′(5) = 0 and F ′′′(5) = 6 6= 0 and Q = 5
is not a local maximum. If the lowest order non-zero derivative is of even order and
negative (positive), then it is a local maximum (minimum); eg., F (Q) = −(Q− 5)4,
F ′(5) = F ′′(5) = F ′′′(5) = 0, F (4)(5) = −24 < 0 and Q = 5 is a local maximum.
Remark 2 (Unboundedness): If limQ→∞ F (Q) =∞, then a global maximum does not
exist.
Remark 3 (Non-differentiability): If F (Q) is not differentiable, then we have to use
other methods to find a global maximum.
Remark 4 (Boundary or corner solution): When there is non-negative restriction
Q ≥ 0 (or an upper limit Q ≤ a), it is possible that the solution occurs at Q = 0 (or
at Q = a). To take care of such possibilities, FOC is modified to become F ′(Q) ≤ 0,
QF ′(Q) = 0 (or F ′(Q) ≥ 0, (a−Q)F ′(Q) = 0).

7.4 Supply function of a competitive producer

Consider first the profit maximization problem of a competitive producer:

max
Q

Π = PQ− C(Q), FOC ⇒ ∂Π

∂Q
= P − C ′(Q) = 0.

The FOC is the inverse supply function (a behavioral equation) of the producer: P
= C ′(Q) = MC. Remember that Q is endogenous and P is exogenous here. To find
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the comparative statics
dQ

dP
, we use the total differential method discussed in the last

chapter:

dP = C ′′(Q)dQ, ⇒ dQ

dP
=

1

C ′′(Q)
.

To determine the sign of
dQ

dP
, we need the SOC, which is

∂2Π

∂Q2
= −C ′′(Q) < 0. There-

fore,
dQs

dP
> 0.

Remark: The result is true no matter what the cost function C(Q) is. MC = C ′(Q)
can be non-monotonic, but the supply curve is only part of the increasing sections of
the MC curve and can be discontinuous.

-Q

6
P

MC
MC is the

supply curve.

- Q

6
P

MC

Q1 Q2

Pc

S(Pc) = {Q1, Q2},
supply curve has
two component.

7.5 Maximization and comparative statics: general procedure

Maximization problem of an agent: max
X

F (X; Y ).

FOC: FX(X∗; Y ) = 0, ⇒ X∗ = X(Y ) · · · · · · Behavioral Equation

Comparative statics: FXXdX + FXY dY = 0⇒ dX

dY
= −FXY

FXX
. SOC: FXX < 0

Case 1: FXY > 0⇒ dX

dY
= −FXY

FXX
> 0.

Case 2: FXY < 0⇒ dX

dY
= −FXY

FXX

< 0.

Therefore, the sign of
dX

dY
depends only on the sign of FXY .

7.6 Utility Function

A consumer wants to maximize his/her utility function U = u(Q) + M = u(Q) +
(Y − PQ).

FOC:
∂U

∂Q
= u′(Q)− P = 0,

⇒ u′(Qd) = P (inverse demand function)
⇒ Qd = D(P ) (demand function, a behavioral equation)
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∂2U

∂Q∂P
= UPQ = −1 ⇒ dQd

dP
= D′(P ) < 0, the demand function is a decreasing

function of price.

7.7 Input Demand Function

The production function of a producer is given by Q = f(x), where x is the quantity
of an input employed. Its profit is Π = pf(x) − wx, where p (w) is the price of the
output (input).
The FOC of profit maximization problem is pf ′(x)− w = 0
⇒ f ′(x) = w/p (inverse input demand function)
⇒ x = h(w/p) (input demand function, a behavioral equation)

∂2Π

∂x∂(w/p)
= −1 ⇒ dx

d(w/p)
= h′(w/p) < 0, the input demand is a decreasing func-

tion of the real input price
w

p
.

7.8 Envelope theorem

Define the maximum function M(Y ) ≡ maxX F (X, Y ) = F (X(Y ), Y ) then the total
derivative

dM

dY
= M ′(Y ) =

∂F (X, Y )

∂Y

∣

∣

∣

∣

X=X(Y )

.

Proof: M ′(Y ) = FX
dX

dY
+ FY . At the maximization point X = X(Y ), FOC implies

that the indirect effect of Y on M is zero.

In the consumer utility maximization problem, V (P ) ≡ U(D(P )) + Y − PD(P )
is called the indirect utility function. The envelope theorem implies that V ′(P ) =
dU

dP

∣

∣

∣

∣

Qd=D(P )

≡ −D(P ), this is a simplified version of Roy’s identity.

In the input demand function problem, π(w, p) ≡ pf(h(w/p))−wh(w/p) is the profit
function. Let p = 1 and still write π(w) ≡ f(h(w))− wh(w). The envelope theorem

implies that π′(w) =
dΠ

dw

∣

∣

∣

∣

x=h(w)

= −h(w), a simplified version of Hotelling’s lemma.

Example: The relationships between LR and SR cost curves
STC(Q; K) = C(Q, K), K: firm size. Each K corresponds to a STC.
LTC(Q) = minK C(Q, K), ⇒ K = K(Q) is the optimal firm size.
LTC is the envelope of STC’s. Each STC tangents to the LTC (STC = LTC) at the
quantity Q such that K = K(Q). Notice that the endogenous variable is K and the
exogenous is Q here.
By envelope theorem, LMC(Q) = dLTC(Q)/dQ = ∂C(Q, K(Q))/∂Q =SMC(Q; K(Q)).
That is, when K = K(Q) is optimal for producing Q, SMC=LMC.



49

Since LAC(Q) =LTC(Q)/Q and SAC(Q) =STC(Q)/Q, LAC is the envelope of SAC’s
and each SAC tangents to the LAC (SAC = LAC) at the quantity Q such that
K = K(Q).

7.9 Effect of a Unit Tax on Monopoly Output (Samuelson)

Assumptions: a monopoly firm, q = D(P ) ⇐⇒ P = f(q), (inverse functions),
C = C(q), t = unit tax

max π(q) = Pq − C(q)− tq = qf(q)− C(q)− tq

q: endogenous; t: exogenous
FOC: ∂π/∂q = f(q) + qf ′(q)− C ′(q)− t = 0.
The FOC defines a relationship between the monopoly output q∗ and the tax rate t
as q∗ = q(t) (a behavioral equation). The derivative dq∗/dt can be determined by the
sign of the cross derivative:

∂2π

∂q∂t
= −1 < 0

Therefore, we have dq∗/dt < 0.
The result can be obtained using the q–pdiagram. FOC ⇐⇒ MR = MC + t.
Therefore, on q–p space, an equilibrium is determined by the intersection point of
MR and MC + t curves.

Case 1: MR is downward sloping and MC is upward sloping:
When t increases, q∗ decreases as seen from the left diagram below.

- q

6
P

MC

MC+t

MR
< - q

6
P

MC

MC+t

MR
<

Case 2: Both MR and MC are downward sloping and MR is steeper. MC decreasing;
MR decreasing more ⇒ t ↑ q ↓.

Case 3: Both MR and MC are downward sloping, but MC is steeper. The diagram
shows that dq∗/dt > 0. It is opposite to our comparative statics result. Why?
MR = MC + t violates SOC < 0, therefore, the intersection of MR and MC + t
is not a profit maximizing point.
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- q

6
P

MC

MC+t
MR

>

7.10 A Price taker vs a price setter

A producer employs an input X to produce an output Q. The production function
is Q = rX. The inverse demand function for Q is P = a − Q. The inverse supply
function of X is W = b + X, where W is the price of X. The producer is the only
seller of Q and only buyer of X.

There are two markets, Q (output) and X (input). We want to find the 2-market
equilibrium, i.e., the equilibrium values of W , X, Q, and P . It depends on the pro-
ducer’s power in each market.

Case 1: The firm is a monopolist in Q and a price taker in X. To the producer,
P is endogenous and W is exogenous. Given W , its object is

max
x

π = PQ−WX = (a−Q)Q−WX = (a−rX)(rX)−WX, ⇒ FOC ar−2r2X−W = 0.

The input demand function is X = X(W ) = ar−W
2r2 .

Equating the demand and supply of X, the input market equilibrium is X = ar−b
2r2+1

and W = b + X = ar+2r2b
2r2+1

.
Substituting back into the production and output demand functions, the output mar-
ket equilibrium is Q = rX = far2 − br2r2 + 1 and P = a−Q = fa + ar2 + b2r2 + 1.

Case 2: The firm is a price taker in Q and a monopsony in X. To the producer,
P is exogenous and W is endogenous. Given P , its object is

max
Q

π = PQ− (b + X)X = PQ− (b + (Q/r))(Q/r), ⇒ FOC P − b

r
− 2Q

r2
= 0.

The output supply function is Q = Q(P ) = r2P−br
2

.

Equating the demand and supply of Q, the output market equilibrium is Q = ar2−br
r2−2

and P = a−Q = 2a+br
2r2+1

.
Substituting back into the production and output demand functions, the output mar-
ket equilibrium is X = Q/r = far − br2 − 2 and W = b + X = far + br2 − 3br2 − 2.

Case 3: The firm is a monopolist in Q and a monopsony in X. To the producer,
both P and W are endogenous, its object is

max
x

π = (a−Q)Q− (b + X)X = (a− (rX))(rX)− (b + X)X.
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(We can also eliminate X instead of Q. The two procedures are the same.) (Show
that π is strictly concave in X.) Find the profit maximizing X as a function of a and
b, X = X(a, b).

Determine the sign of the comparative statics
∂X

∂a
and

∂X

∂b
and explain your results

in economics.
Derive the price and the wage rate set by the firm P and W and compare the results
with that of cases 1 and 2.

7.11 Labor Supply Function

Consider a consumer/worker trying to maximize his utility function subject to the
time constraint that he has only 168 hours a week to spend between work (N) and
leisure (L), N + L = 168, and the budget constraint which equates his consumption
(C) to his wage income (wN), C = wN , as follows:

max U = U(C, L) = U(wN, 168−N) ≡ f(N, w)

Here N is endogenous and w is exogenous. The FOC requires that the total derivative
of U w.r.t. N be equal to 0.

FOC:
dU

dN
= fN = UCw + UL(−1) = 0.

FOC defines a relationship between the labor supply of the consumer/worker, N ,
and the wage rate w, which is exactly the labor supply function of the individual
N∗ = N(w). The slope the supply function N ′(w) is determined by the sign of the
cross-derivative fNw

U, Uc, UL

C ← N
ւ

ւտ
տ

L w

fNw = UC + wNUCC −NULC

The sign of fNw is indeterminate, therefore, the slope of N∗ = N(w) is also indeter-
minate.
Numerical Examples:

Example 1: U = 2
√

C + 2
√

L elasticity of substitution σ > 1

U = 2
√

C+2
√

L = 2
√

wN+2
√

168−N,
dU

dN
=

w√
C
− 1√

L
=

w√
wN
− 1√

168−N
= 0.
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Therefore, the inverse labor supply function is w = N/(168 − N), which is
positively sloped.

- N

6
w

σ > 1

- N

6
w

σ < 1

Example 2: U = CL
C+L

elasticity of substitution σ < 1

U =
CL

C + L
=

wN(168−N)

wN + 168−N
,

dU

dN
=

wL2 − C2

(C + L)2
= 0.

Therefore, the inverse labor supply function is w = [(168 − N)/N ]2, which is
negatively sloped.

Example 3: U = CL Cobb-Douglas( σ = 1)

U = CL = wN(168−N)
dU

dN
= w(168− 2N) = 0

The labor supply function is a constant N = 84 and the curve is vertical.

- N

6
w

σ = 1

- N

6
w

Backward-bending Labor Supply Curve: It is believed that the labor supply
curve can be backward-bending.

7.12 Exponential and logarithmic functions and interest compounding

Exponential function f(x) = ex is characterized by f(0) = 1 and f(x) = f ′(x) =
f ′′(x) = . . . = f (n)(x). The Taylor expansion of the exponential functionat x = 0
becomes

ex = 1 + x + x2/2! + · · ·+ xn/n! + . . .

Some Rules:
d

dx
(ex) = ex,

d

dx
eax = aeax,

d

dx
ef(x) = f ′(x)ef(x).
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The inverse of ex is the logarithmic function: ln x. If x = ey, then we define y ≡ lnx.

More generally, if x = ay, a > 0, then we define y ≡ loga x =
ln x

ln a
.

Using inverse function rule: dx = eydy,
d

dx
ln x =

1

eln x
= 1/x.
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y = ex

y = ln x

ax = eln ax

= e(ln a)x ⇒ d

dx
ax = (ln a)e(ln a)x = (ln a)ax.

d

dx
lna x =

(

1

ln a

)

1

x

growth rate of a function of time y = f(t):

growth rate ≡ 1

y

dy

dt
=

f ′

f
=

d

dt
[ln f(t)].

Example: f(t) = g(t)h(t). ln f(t) = ln g(t) + ln h(t), therefore, growth rate of f(t) is
equal to the sum of the growth rates of g(t) and h(t).

Interest compounding
A: principal (PV), V = Future Value, r = interest rate, n = number of periods

V = A(1 + r)n

If we compound interest m times per period, then the interest rate each time becomes
r/m, the number of times of compounding becomes mn, and

V = A[(1 + r/m)m]n

lim
m→∞

(1 + r/m)m = 1 + r + r2/2! + · · ·+ rn/n! + . . . = er

Therefore, V → Aern, this is the formula for instantaneous compounding.
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7.13 Timing: (when to cut a tree)

t: number of years to wait, A(t) present value after t years

V (t) = Ke
√

t: the market value of the tree after t years

A(t) = Ke
√

te−rt is the present value
We want to find the optimal t such that the present value is maximized.

max
t

A(t) = Ke
√

te−rt.

The FOC is

A′ =

(

1

2
√

t
− r

)

A(t) = 0

Because A(t) 6= 0, FOC implies:
1

2
√

t
− r = 0, t∗ = 1/(4r2)

For example, if r = 10%, t = 25, then to wait 25 years before cutting the tree is the
optimum.
Suppose that A(t) = ef(t)

FOC becomes: A′(t)/A(t) = f ′(t) = r, ⇒ f ′(t) is the instantaneous growth rate (or
the marginal growth rate) at t, ⇒ at t = 25, growth rate = 10% = r, at t = 26,
growth rate < 10%. Therefore, it is better to cut and sell the tree at t = 25 and put
the proceed in the bank than waiting longer.
SOC: It can be shown that A′′ < 0.

7.14 Problems

1. Suppose the total cost function of a competitive firm is C(Q) = eaQ+b. Derive
the supply function.

2. The input demand function of a competitive producer, X = X(W ), can be
derived by maximizing the profit function Π = F (X) −WX with respect to
X, where X is the quantity of input X and W is the price of X. Derive the
comparative statics dX/dW and determine its sign.

3. The utility function of a consumer is given by U = U(X) + M , where X is the
quantity of commodity X consumed and M is money. Suppose that the total
income of the consumer is $ 100 and that the price of X is P . Then the utility
function become U(X) + (100−XP ).

(a) Find the first order condition of the utility maximization problem.

(b) What is the behavior equation implied by the first order condition?

(c) Derive dX/dP and determine its sign. What is the economic meaning of
your result?

4. The consumption function of a consumer, C = C(Y ), can be derived by max-
imizing the utility function U(C, Y ) = u1(C) + u2(Y − C), where u′

1(C) > 0,
u′

2(Y −C) > 0 and u1”(C) < 0, u2”(Y −C) < 0. Derive the comparative statics
dC/dY and determine its sign.
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5. Consider a duopoly market with two firms, A and B. The inverse demand func-
tion is P = f(QA + QB), f ′ < 0, f” < 0. The cost function of firm A is TCA

= C(QA), C ′ > 0, C” > 0. The profit of firm A is ΠA = PQA − TCA =
QAf(QA +QB)−C(QA). For a given output of firm B, QB, there is a QA which
maximizes firm A’s profit. This relationship between QB and QA is called the
reaction function of firm A, QA = RA(QB).

(a) Find the slope of the reaction function R′
A = dQA

dQB
.

(b) When QB increases, will firm A’s output QA increase or decrease?

6. The profit of a monopolistic firm is given by Π = R(x) − C(x, b), where x is
output, b is the price of oil, R(x) is total revenue, and C(x, b) is the total cost
function. For any given oil price b, there is an optimal

output which maximizes profit, that is, the optimal output is a function of oil
price, x = x(b). Assume that Cbx = ∂2C/∂b∂x > 0, that is, an increase in oil
price will increase marginal cost. Will an increase in oil price increase output,
that is, is dx/db > 0?

7. Consider a monopsony who uses a single input, labor (L), for the production of a
commodity (Q), which he sells in a perfect competition market. His production
function is Q = F (L), (f ′(L) > 0). The labor supply function is L = L(w), or
more convenient for this problem, w = L−1(L) = W (L). Given the commodity
price p, there is an optimal labor input which maximizes the monopsonist’s
total profit Π = pf(L)−W (L)L. In this problem, you are asked to derive the
relation between L and p.

(a) State the FOC and the SOC of the profit maximization problem.

(b) Derive the comparative statics dL/dp and determine its sign.

8. Suppose that a union has a fixed supply of labor (L) to sell, that unemployed
workers are paid unemployment insurance at a rate of $u per worker, and that
the union wishes to maximize the sum of the wage bill plus the unemployment
compensation S = wD(w) + u(L−D(w)), where w is wage per

worker, D(w) is labor demand function, and D′(w) < 0. Show that if u in-
creases, then the union should set a higher w. (Hint: w is endogenous and u is
exogenous.)

9. The production function of a competitive firm is given by Q = F (L, K). where
L is variable input and K is fixed input. The short run profit function is given
by Π = pQ−wL−rK, where p is output price, w is wage rate, and r is the rental
rate on capital. In the short run, given the quantity of fixed input K,there is a
L which maximizes Π. Hence, the short run demand for L can be regarded as
a function of K. Assume that FLK > 0.

(a) State the FOC and SOC of the profit maximization problem.

(b) Derive the comparative statics dL/dK and determine its sign.
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7.15 Concavity and Convexity

The derivation of a behavioral equation X = X(Y ) from the maximization problem
maxx F (X; Y ) is valid only if there exists a unique global maximum for every Y . If
there are multiple global maximum, then X = X(Y ) has multiple values and the
comparative static analysis is not valid. Here we are going to discuss a condition on
F (X; Y ) so that a critical point is always a unique global maximum and the compar-
ative static analysis is always valid.

Convex sets
A is a convex set if ∀X0, X1 ∈ A and 0 ≤ θ ≤ 1, Xθ ≡ (1 − θ)X0 + θX1 ∈ A. (If
X0, X1 ∈ A then the whole line connecting X0 and X1 is in A.)
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some convex sets
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- x1

6
x2
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some non-convex sets

(1) If A1 and A2 are convex, then A1 ∩ A2 is convex but A1 ∪ A2 is not necessar-
ily convex. Also, the empty set itself is a convex set.
(2) The convex hull of A is the smallest convex set that contains A. For example, the
convex hull of {X0} ∪ {X1} is the straight line connecting X0 and X1.

Convex and concave functions
Given a function F (X), we define the sets

G+
F ≡ {(x, y)| y ≥ F (x), x ∈ R}, G−

F ≡ {(x, y)| y ≤ F (x), x ∈ R}, G+
F , G−

F ⊂ R2.

If G+
F (G−

F ) is a convex set, then we say F (X) is a convex function (a concave func-
tion). If F (X) is defined only for nonnegative values X ≥ 0, the definition is similar.

-X

6

F (X)

G−
F

G+
F

G−
F is a convex set ⇒ F (X) is concave

- X

6 F (X)

G−
F

G+
F

G+
F is a convex set ⇒ F (X) is convex

Equivalent Definition: Given X0 < X1, 0 ≤ θ ≤ 1, denote F 0 = F (X0),
F 1 = F (X1). Define Xθ ≡ (1 − θ)X0 + θX1, F (Xθ) = F ((1 − θ)X0 + θX1). Also
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define F θ ≡ (1− θ)F (X0) + θF (X1) = (1− θ)F 0 + θF 1.

-X

6 F (X)

X0 Xθ X1

F 0 = F (X0)

F (Xθ)

F 1 = F (X1)

- X
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X0 Xθ X1

F 0

F θ

F 1

Xθ −X0

X1 −Xθ
=

θ(X1 −X0)

(1− θ)(X1 −X0)
=

θ

1− θ
,

F θ − F 0

F 1 − F θ
=

θ(F 1 − F 0)

(1− θ)(F 1 − F 0)
=

θ

1− θ
.

Therefore, (Xθ, F θ) is located on the straight line connecting (X0, F 0) and (X1, F 1)
and when θ shifts from 0 to 1, (Xθ, F θ) shifts from (X0, F 0) to (X1, F 1) (the right
figure). On the other hand, (Xθ, F (Xθ)) shifts along the curve representing the graph
of F (X) (the left figure). Put the two figures together:
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6 F (X)

X0 Xθ X1

�
�

�
�

�
�

�
�

�

F θ

F (Xθ)

F (X) is strictly concave ⇒ if for all X0, X1 and θ ∈ (0, 1), F (Xθ) > F θ.
F (X) is concave ⇒ if for all X0, X1 and θ ∈ [0, 1], F (Xθ) ≥ F θ.

-X

6

F (X)

F (X) is strictly

concave
- X

6

F (X)F (X) is concave
(not strictly)

Notice that these concepts are global concepts. (They have something to do with the
whole graph of F , not just the behavior of F nearby a point.) The graph of a concave
function can have a flat part. For a strictly concave function, the graph should be
curved everywhere except at kink points.

F (X) is strictly convex ⇒ if for all X0, X1 and θ ∈ (0, 1), F (Xθ) < F θ.
F (X) is convex ⇒ if for all X0, X1 and θ ∈ [0, 1], F (Xθ) ≤ F θ.
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-X

6
F

F (X) is strictly

convex

- X

6
F

H

F (X) is convex

(not strictly)

Remark 1: A linear function is both concave and convex since F θ ≡ F (Xθ).

-X

6
F

���������

- X

6
F

�
�
�
�
�
��
�

�
����

a concave
piecewise-linear
function

- X

6
F

����
�

�
�
�
�
�
�
��

a convex
piecewise-linear
function

Remark 2: A piecewise-linear function consists of linear components; for example,
the income tax schedule T = f(Y ) is a piecewise-linear function. Other examples are

concave F (X) =

{

2X X ≤ 1
1 + X X > 1

convex F (X) =

{

X X ≤ 1
2X − 1 X > 1

In the following theorems, we assume that F ′′(X) exists for all X.

Theorem 1: F (X) is concave, ⇔ F ′′(X) ≤ 0 for all X.
F ′′(X) < 0 for all X ⇒ F (X) is strictly concave.
Proof: By Taylor’s theorem, there exist X̄0 ∈ [X0, Xθ] and X̄1 ∈ [Xθ, X1] such that

F (X1) = F (Xθ) + F ′(Xθ)(X1 −Xθ) +
1

2
F ′′(X̄1)(X1 −Xθ)2

F (X0) = F (Xθ) + F ′(Xθ)(X0 −Xθ) +
1

2
F ′′(X̄0)(X0 −Xθ)2

⇒ F θ = F (Xθ) +
1

2
θ(1− θ)(X1 −X0)2[F ′′(X̄0) + F ′′(X̄1)].

Theorem 2: If F (X) is concave and F ′(X0) = 0, then X0 is a global maximum.
If F (X) is strictly concave and F ′(X0) = 0, then X0 is a unique global maximum.
Proof: By theorem 1, X0 must be a local maximum. If it is not a global maximum,
then there exists X1 such that F (X1) > F (X0), which implies that F (Xθ) > F (X0)
for θ close to 0. Therefore, X0 is not a local maximum, a contradiction.

Remark 1 (boundary/corner solution): The boundary or corner condition F ′(X) ≤ 0,
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XF ′(X) = 0 (or F ′(X) ≥ 0, (X − a)F ′(X) = 0) becomes sufficient for global maxi-
mum.

Remark 2 (minimization problem): For the minimization problem, we replace con-
cavity with convexity and F ′′(X) < 0 with F ′′(X) > 0. If F (X) is convex and
F ′(X∗) = 0, then X∗ is a global minimum.
If F (X) is strictly convex and F ′(X∗) = 0, then X∗ is a unique global minimum.

Remark 3: The sum of two concave functions is concave. The product of two concave
function is not necesarily concave. Xa is strictly concave if a < 1, strictly convex if
a > 1. eX is strictly convex and ln X is strctly concave with X > 0.

-X

6
F

Xa, a > 1

- X

6
F

Xa, 0 < a < 1

- X

6
F

Xa, a < 0

-X

6
F

eaX

- X

6
F

ln X
- X

6
F

−aX2 + bX + c

Remark 4: A concave function does not have to be differentiable, but it must be
continuous on the interior points.

7.16 Indeterminate forms and L’Hôpital’s rule

Let f(x) =
g(x)

h(x)
, g(a) = h(a) = 0 and g(x) and h(x) be continuous at x = a. f(a) is

not defined because it is
0

0
. However, limx→a f(x) can be calculated.

lim
x→a

f(x) = lim
x→a

g(x)

h(x)
= lim

x→a

g(x)− g(a)

h(x)− h(a)
= lim

∆x→0

g(a + ∆x)− g(a)

h(a + ∆x)− h(a)
=

g′(a)

h′(a)
.

The same procedure also works for the case with g(a) = h(a) =∞.

Example 1: f(x) =
g(x)

h(x)
=

ln[(ax + 1)/2]

x
,
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g(0) = h(0) = 0, h′(x) = 1, g′(x) =
(ln a)ax

ax + 1
.

⇒ h′(0) = 1 and g′(0) =
ln a

2
, ⇒ limx→0 f(x) =

ln a

2
.

Example 2: f(x) =
g(x)

h(x)
=

x

ex
, h′(x) = ex, g′(x) = 1.

⇒ h′(∞) =∞ and g′(∞) = 1, ⇒ limx→∞ f(x) =
1

∞ = 0.

Example 3: f(x) =
g(x)

h(x)
=

ln x

x
, h′(x) = 1, g′(x) =

1

x
.

⇒ limx→0+ h′(x) = 1 and limx→0+ g′(x) =∞, ⇒ limx→0+ f(x) =
1

∞ = 0.

7.17 Newton’s method

We can approximate a root x∗ of a nonlinear equation f(x) = 0 using an algorithm
called Newton’s method.

-x

6

xn xn+1 x∗

f(xn)
S

S
S

SS

f ′(xn) =
f(xn)

xn − xn+1

Recursive formula: xn+1 = xn −
f(xn)

f ′(xn)
.

If f(x) is not too strange, we will have limn→∞ xn = x∗. Usually, two or three
steps would be good enough.

Example: f(x) = x3 − 3, f ′(x) = 3x2, xn+1 = xn −
x3 − 3

3x2
= xn −

x

3
+

1

x2
.

Starting x0 = 1, x1 = 1− 1

3
+ 1 =

5

3
≈ 1.666. x2 =

5

3
− 5

9
+

9

25
=

331

225
≈ 1.47. The

true value is x∗ = 3
√

3 ≈ 1.44225.



61

8 Optimization–Multivariate Case

Suppose that the objective function has n variables: max
x1,...,xn

F (x1, . . . , xn) = F (X).

A local maximum X∗ = (x∗
1, . . . , x

∗
n): ∃ǫ > 0 such that F (X∗) ≥ F (X) for all X

satisfying xi ∈ (x∗
i − ǫ, x∗

i + ǫ) ∀i.
A critical point Xc = (xc

1, . . . , x
c
n):

∂F (Xc)

∂xi

= 0 ∀i.
A global maximum X∗: F (X∗) ≥ F (X) ∀X.
A unique global maximum X∗: F (X∗) > F (X) ∀X 6= X∗.
The procedure is the same as that of the single variable case. (1) Use FOC to find
critical points; (2) use SOC to check whether a critical point is a local maximum, or
show that F (X) is concave so that a critical point must be a global maximum.

If we regard variables other than xi as fixed, then it is a single variable maximization
problem and, therefore, we have the necessary conditions

FOC:
∂F

∂xi
= 0 and SOC:

∂2F

∂x2
i

< 0, i = 1, . . . , n.

However, since there are n×n second order derivatives (the Hessian matrix H(F )) and
the SOC above does not consider the cross-derivatives, we have a reason to suspect
that the SOC is not sufficient. In the next section we will provide a counter-example
and give a true SOC.

8.1 SOC

SOC of variable-wise maximization is wrong
Example: max

x1,x2

F (x1, x2) = −x2
1 + 4x1x2 − x2

2.

FOC: F1 = −2x1 + 4x2 = 0, F2 = 4x1 − 2x2 = 0, ⇒ x1 = x2 = 0.
SOC? F11 = F22 = −2 < 0.

- x1

6
x2

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������������������

4

1

4

1

-4
-1

-4
-1

(0,0) is
a saddle point.

- xi

6
F

When xj = 0,
xi = 0 is

a maximum.
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F (0, 0) = 0 < F (k, k) = 2k2 for all k 6= 0. ⇒ (0, 0) is not a local maximum!
The true SOC should take into consideration the possibility that when x1 and x2

increase simultaneously F may increase even if individual changes cannot increase F .

SOC of sequential maximization:
We can solve the maximization problem sequentially. That is, for a given x2, we
can find a x1 such that F (x1, x2) is maximized. The FOC and SOC are F1 = 0 and
F11 < 0. The solution depends on x2, x1 = h(x2), i.e., we regard x1 as endogenous
variable and x2 as an exogenous variable in the first stage. Using implicit function
rule, dx1/dx2 = h′(x2) = −F12/F11. In the second stage we maximize M(x2) ≡
F (h(x2), x2). The FOC is M ′(x2) = F1h

′ + F2 = F2 = 0 (since F1 = 0). The SOC is

M ′′(x2) = F1h
′′ + F11(h

′)2 + 2F12h
′ + F22 = (−F 2

12 + F11F22)/F11 < 0.

Therefore, the true SOC is: F11 < 0 and F11F22 − F 2
12 > 0.

For the n-variable case, the sequential argument is more complicated and we use Tay-
lor’s expansion.

SOC using Taylor’s expansion:
To find the true SOC, we can also use Taylor’s theorem to expand F (X) around a
critical point X∗:

F (X) = F (X∗) + F1(X
∗)(x1 − x∗

1) + F2(X
∗)(x2 − x∗

2)

+
1

2
(x1 − x∗

1, x2 − x∗
2)

(

F11(X
∗) F12(X

∗)
F21(X

∗) F22(X
∗)

)(

x1 − x∗
1

x2 − x∗
2

)

+ higher order terms.

Since X∗ is a critical point, F1(X
∗) = F2(X

∗) = 0 and we have the approximation
for X close to X∗:

F (X)− F (X∗) ≈ 1

2
(x1 − x∗

1, x2 − x∗
2)

(

F11(X
∗) F12(X

∗)
F21(X

∗) F22(X
∗)

)(

x1 − x∗
1

x2 − x∗
2

)

≡ 1

2
v′H∗v.

True SOC: v′H∗v < 0 for all v 6= 0.

In the next section, we will derive a systematic method to test the true SOC.

8.2 Quadratic forms and their signs

A quadratic form in n variables is a second degree homogenous function.

f(v1, . . . , vn) =
n
∑

i=1

n
∑

j=1

aijvivj = (v1, . . . , vn)







a11 · · · a1n
...

. . .
...

an1 · · · ann













v1
...
vn






≡ v′Av.

Since vivj = vjvi, we can assume that aij = aji so that A is symmetrical.

Example 1: (v1 − v2)
2 = v2

1 − 2v1v2 + v2
2 = (v1, v2)

(

1 −1
−1 1

)(

v1

v2

)

.
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Example 2: 2v1v2 = (v1, v2)

(

0 1
1 0

)(

v1

v2

)

.

Example 3: x2
1 + 2x2

2 + 6x1x3 = (x1, x2, x3)





1 0 3
0 2 0
3 0 0









x1

x2

x3



.

v′Av is called negative semidefinite if v′Av ≤ 0 for all v ∈ Rn.
v′Av is called negative definite if v′Av < 0 for all v 6= 0.
v′Av is called positive semidefinite if v′Av ≥ 0 for all v ∈ Rn.
v′Av is called positive definite if v′Av > 0 for all v 6= 0.

(1) −v2
1 − 2v2

2 < 0, if v1 6= 0 or v2 6= 0⇒ negative.
(2) −(v1 − v2)

2 ≤ 0, = 0 if v1 = v2 ⇒ negative semidefinite.
(3) (v1 + v2)

2 ≥ 0, = 0 if v1 = −v2 ⇒ positive semidefinite.
(4) v2

1 + v2
2 > 0, if v1 6= 0 or v2 6= 0⇒ positive.

(5) v2
1 − v2

2

>
<

0 if |v1|
>
<
|v2| ⇒ neither positive nor negative definite.

(6) v1v2
>
<

0 if sign(v1)
=
6= sign(v2) ⇒ neither positive nor negative definite.

Notice that if v′Av is negative (positive) definite then it must be negative (positive)
semidefinite.
Testing the sign of a quadratic form:

n = 2: v′Av = (v1, v2)

(

a11 a12

a21 a22

)(

v1

v2

)

= a11v
2
1 + 2a12v1v2 + a22v

2
2 =

a11

(

v2
1 + 2

a12

a11
v1v2 +

a2
12

a2
11

v2
2

)

+

(

−a2
12

a11
+ a22

)

v2
2 = a11

(

v1 +
a12

a11
v2

)2

+

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

a11
v2
2 .

Negative definite ⇔ a11 < 0 and

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

= a11a22 − a2
12 > 0.

Positive definite ⇔ a11 > 0 and

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

= a11a22 − a2
12 > 0.

For negative or positive semidefinite, replace strict inequalities with semi-inequalities.
The proofs for them are more difficult and discussed in Lecture 13.

Example 1: F (v1, v2) = −2v2
1 + 8v1v2 − 2v2

2 = (v1, v2)

(

−2 4
4 −2

)(

v1

v2

)

, a11 =

−2 < 0 but

∣

∣

∣

∣

−2 4
4 −2

∣

∣

∣

∣

= −12 < 0 ⇒ neither positive nor negative. The matrix is

the Hessian of F of the counter-example in section 1. Therefore, the counter-example
violates the SOC.
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General n: v′Av = (v1, . . . , vn)







a11 · · · a1n
...

. . .
...

an1 · · · ann













v1
...

vn






= a11(v1 + · · ·)2

+

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

a11
(v2+· · ·)2+

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

(v3+· · ·)2+· · ·+

∣

∣

∣

∣

∣

∣

∣

a11 · · · a1n
...

. . . · · ·
an1 · · · ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 · · · a1(n−1)
...

. . .
...

a(n−1)1 · · · a(n−1)(n−1)

∣

∣

∣

∣

∣

∣

∣

v2
n.

k-th order principle minor of A: A(k) ≡







a11 · · · a1k
...

. . .
...

ak1 · · · akk






, k = 1, . . . , n.

Negative definite ⇔ A(1) = a11 < 0,
|A(2)|
|A(1)| < 0,

|A(3)|
|A(2)| < 0, . . .,

|A(n)|
|A(n−1)| < 0.

Positive definite ⇔ A(1) = a11 > 0,
|A(2)|
|A(1)| > 0,

|A(3)|
|A(2)| > 0, . . .,

|A(n)|
|A(n−1)| > 0.

Negative definite ⇔ |A(1)| = a11 < 0, |A(2)| =

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

> 0, |A(3)| =

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

< 0, · · ·, (−1)n|A(n)| = (−1)n

∣

∣

∣

∣

∣

∣

∣

a11 · · · a1n
...

. . .
...

an1 · · · ann

∣

∣

∣

∣

∣

∣

∣

> 0.

Positive definite ⇔ |A(1)| = a11 > 0, |A(2)| =

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

> 0, |A(3)| =

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

> 0, · · ·, |A(n)| =

∣

∣

∣

∣

∣

∣

∣

a11 · · · a1n
...

. . .
...

an1 · · · ann

∣

∣

∣

∣

∣

∣

∣

> 0.

The conditions for semidefinite are more complicated and will be discussed in Lecture
13 using the concept of eigenvalues of a square matrix.

8.3 SOC again

From the last two sections, the SOC for a local maximum can be summarized as:

SOC: v′HF (X∗)v is negative definite ⇒ F11(X
∗) < 0,

∣

∣

∣

∣

F11(X
∗) F12(X

∗)
F21(X

∗) F22(X
∗)

∣

∣

∣

∣

=

F11F22 − F 2
12 > 0,

∣

∣

∣

∣

∣

∣

F11(X
∗) F12(X

∗) F13(X
∗)

F21(X
∗) F22(X

∗) F23(X
∗)

F31(X
∗) F32(X

∗) F33(X
∗)

∣

∣

∣

∣

∣

∣

< 0, . . .

Example: maxF (x1, x2) = 3x1 + 3x1x2 − 3x2
1 − x3

2. (A cubic function in 2 vari-
ables.)
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FOC: F1 = 3 + 3x2 − 6x1 = 0 and F2 = 3x1 − 3x2
2 = 0.

Two critical points:

(

x1

x2

)

=







1

4

−1

2






and

(

1
1

)

.

Hessian matrix: H(x1, x2) =

(

F11(X) F12(X)
F21(X) F22(X)

)

=

(

−6 3
3 −6x2

)

; |H1(X)| =

F11(X) = −6 < 0, |H2(X)| =
∣

∣

∣

∣

−6 3
3 −6x2

∣

∣

∣

∣

= 36x2 − 9.

|H2(
1

4
,−1

2
)| = −27 < 0⇒







1

4

−1

2






is not a local max.

|H2(1, 1)| = 27 > 0⇒
(

1
1

)

is a local max. F (1, 1) = 2. It is not a global maximum

because F→∞ when x2→−∞.

Remark 1: F11 < 0 and F11F22 − F 2
12 > 0 together implies F22 < 0.

Remark 2: If |Hk(X∗)| = 0 for some 1 ≤ k ≤ n then X∗ is a degenerate critical point.
Although we can still check whether v′Hv is negative semidefinite, it is insufficient for
a local maximum. We have to check the third or higher order derivatives to determine
whether X∗ is a local maximum. It is much more difficult than the single variable
case with F ′′ = 0.

8.4 Joint products

A competitive producer produces two joint products. (eg., gasoline and its by prod-
ucts or cars and tructs, etc.)
Cost function: C(q1, q2).
Profit function: Π(q1, q2; p1, p2) = p1q1 + p2q2 − C(q1, q2).
FOC: Π1 = p1 − C1 = 0, Π2 = p2 − C2 = 0; or pi = MCi.

SOC: Π11 = −C11 < 0,

∣

∣

∣

∣

−C11 −C12

−C21 −C22

∣

∣

∣

∣

≡ ∆ > 0.

Example: C(q1, q2) = 2q2
1 + 3q2

2 − q1q2

FOC: p1 − 4q1 + q2 = 0, p2 + q1 − 6q2 = 0 ⇒ supply functions q1 = (6p1 + p2)/23
and q2 = (p1 + 4p2)/23.

SOC: −C11 = −4 < 0,

∣

∣

∣

∣

−C11 −C12

−C21 −C22

∣

∣

∣

∣

=

∣

∣

∣

∣

−4 1
1 −6

∣

∣

∣

∣

= 23 > 0.

Comparative statics:

Total differential of FOC:

(

C11 C12

C21 C22

)(

dq1

dq2

)

=

(

dp1

dp2

)

⇒







∂q1

∂p1

∂q1

∂p2
∂q2

∂p1

∂q2

∂p2






=

1

∆

(

C22 −C12

−C21 C11

)

.
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SOC ⇒ C11 > 0, C22 > 0, ∆ > 0⇒ ∂q1

∂p1
> 0,

∂q2

∂p2
> 0.

∂q1

∂p2

and
∂q2

∂p1

are positive if the joint products are beneficially to each other in the

production so that C12 < 0.

8.5 Monopoly price discrimination

A monopoly sells its product in two separable markets.
Cost function: C(Q) = C(q1 + q2)
Inverse market demands: p1 = f1(q1) and p2 = f2(q2)
Profit function: Π(q1, q2) = p1q1 + p2q2−C(q1 + q2) = q1f1(q1)+ q2f2(q2)−C(q1 + q2)
FOC: Π1 = f1(q1)+q1f

′
1(q1)−C ′(q1+q2) = 0, Π2 = f2(q2)+q2f

′
2(q2)−C ′(q1 +q2) = 0;

or MR1 = MR2 = MC.

SOC: Π11 = 2f ′
1 + q1f

′′
1 − C ′′ < 0,

∣

∣

∣

∣

2f ′
1 + q1f

′′
1 − C ′′ −C ′′

−C ′′ 2f ′
2 + q2f

′′
2 − C ′′

∣

∣

∣

∣

≡ ∆ > 0.

Example: f1 = a− bq1, f2 = α− βq2, and C(Q) = 0.5Q2 = 0.5(q1 + q2)
2.

f ′
1 = −b, f ′

2 = −β, f ′′
1 = f ′′

2 = 0, C ′ = Q = q1 + q2, and C ′′ = 1.

FOC: a− 2bq1 = q1 + q2 = α− 2βq2 ⇒
(

1 + 2b 1
1 1 + 2β

)(

q1

q2

)

=

(

a
α

)

⇒
(

q1

q2

)

=
1

(1 + 2b)(1 + 2β)− 1

(

a(1 + 2β)− α
α(1 + 2b)− a

)

.

SOC: −2b− 1 < 0 and ∆ = (1 + 2b)(1 + 2β)− 1 > 0.
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MR2

aaaaaaaaaaaaaaa MR1+2

Q∗q∗2q∗1

MC∗

MC = MR1+2 ⇒ Q∗, MC∗

MC∗ = MR1 ⇒ q∗1

MC∗ = MR2 ⇒ q∗2

8.6 SR supply vs LR supply - Le Châtelier principle

A competitive producer employs a variable input x1 and a fixed input x2. Assume
that the input prices are both equal to 1, w1 = w2 = 1.
Production function: q = f(x1, x2), assume MPi = fi > 0, fii < 0, fij > 0,
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f11f22 > f 2
12.

Profit function: Π(x1, x2; p) = pf(x1, x2)− x1 − x2.

Short-run problem (only x1 can be adjusted, x2 is fixed):
SR FOC: Π1 = pf1 − 1 = 0, or w1 = VMP1. SOC: Π11 = pf11 < 0,

Comparative statics: f1dp+pf11dx1 = 0⇒dx1

dp
=
−f1

pf11

> 0,
dqs

dp
=
−f 2

1

pf11

=
−1

p3f11

> 0.

Long-run problem (both x1 and x2 can be adjusted):
LR FOC: Π1 = pf1 − 1 = 0, Π2 = pf2 − 1 = 0; or wi = VMPi.

SOC: Π11 = pf11 < 0,

∣

∣

∣

∣

pf11 pf12

pf21 pf22

∣

∣

∣

∣

≡ ∆ > 0.

Comparative statics:

(

f1dp
f2dp

)

+

(

pf11 pf12

pf21 pf22

)(

dx1

dx2

)

=

(

0
0

)

⇒
(

dx1/dp
dx2/dp

)

=
−1

p(f11f22 − f 2
12)

(

f1f22 − f2f12

f2f11 − f1f21

)

,
dqL

dp
=
−(f11 + f22 − 2f12)

p3(f11f22 − f 2
12)

Le Châtelier principle:
dqL

dp
>

dqs

dp
.

Example: f(x1, x2) = 3x
1/3
1 x

1/3
2 (homogenous of degree 2/3)

LR FOC: px
−2/3
1 x

1/3
2 = 1 = px

1/3
1 x

−2/3
2 ⇒ x1 = x2 = p3 qL = 3p2.

SR FOC (assuming x̄2 = 1): px
−2/3
1 = 1⇒ x1 = p3/2 qs = 3p1/2.

ηL (LR supply elasticity) = 2 > ηs (SR supply elasticity) = 1/2.

- q

6
p

Ss(p) = 3p0.5

SL(p) = 3p2

- p

6
π

���������� πL(p)

πs(p; x̄2)

h(p)

p̄

Envelop theorem, Hotelling’s lemma, and Le Châtelier principle
From the SR problem we first derive the SR variable input demand function x1 =
x1(p, x̄2).
Then the SR supply function is obtained by substituting into the production function
qs = f(x1(p, x̄2), x̄2) ≡ Ss(p; x̄2).
The SR profit function is πs(p, x̄2) = pqs − x1(p, x̄2)− x̄2.

Hotelling’s lemma: By envelop theorem,
∂πs

∂p
= Ss(p, x̄2).

From the LR problem we first derive the input demand functions x1 = x1(p) and
x2 = x2(p).
Then the LR supply function is obtained by substituting into the production function
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qL = f(x1(p), x2(p)) ≡ SL(p).
The LR profit function is πL(p) = pqL − x1(p)− x2(p).

(Also Hotelling’s lemma) By envelop theorem,
∂πL

∂p
= SL(p).

Notice that πL(p) = πs(p; x2(p)).

Let x̄2 = x2(p̄), define h(p) ≡ πL(p) − πs(p, x̄2). h(p) ≥ 0 because in the LR,
the producer can adjust x2 to achieve a higher profit level.
Also, h(p̄) = 0 because πL(p̄) = πs(p̄; x2(p̄)) = πs(p̄; x̄2).

Therefore, h(p) has a minimum at p = p̄ and the SOC is h′′(p̄) > 0 =
∂2πL

∂p2
−∂2πs

∂p2
> 0,

which implies

Le Châtelier principle:
dqL

dp
− dqs

dp
> 0.

8.7 Concavity and Convexity

Similar to the single variable case, we define the concepts of concavity and convexity
for 2-variable functions F (X) = F (x1, x2) by defining G+

F , G−
F ⊂ R2 s follows.

G+
F ≡ {(x1, x2, y)| y ≥ F (x1, x2), (x1, x2) ∈ R2}, G−

F ≡ {(x1, x2, y)| y ≤ F (x1, x2), (x1, x2) ∈ R2}.

If G+
F (G−

F ) is a convex set, then we say F (X) is a convex function (a concave func-
tion). If F (X) is defined only for nonnegative values x1, x2 ≥ 0, the definition is
similar. (The extension to n-variable functions is similar.)

Equivalently, given X0 =

(

x0
1

x0
2

)

, X1 =

(

x1
1

x1
2

)

, 0 ≤ θ ≤ 1, F 0 ≡ F (X0),

F 1 ≡ F (X1), we define

Xθ ≡ (1− θ)X0 + θX1 =

(

(1− θ)x0
1 + θx1

1

(1− θ)x0
2 + θx1

2

)

≡
(

xθ
1

xθ
2

)

, F (Xθ) = F ((1− θ)X0 +

θX1)
F θ ≡ (1− θ)F (X0) + θF (X1) = (1− θ)F 0 + θF 1.

-x1

6
x2

@
@

@
@

@
@

X0

Xθ

X1

x0
1 xθ

1 x1
1

x0
2

xθ
2

x1
2

Xθ is located on the

straight line connecting X0 and X1,

when θ shifts from 0 to 1,

Xθ shifts from X0 to X1.

On 3-dimensional (x1–x2–F ) space, (Xθ, F θ) is located on the straight line connecting
(X0, F 0) and (X1, F 1), when θ shifts from 0 to 1, (Xθ, F θ) shifts from (X0, F 0) to
(X1, F 1). On the other hand, (Xθ, F (Xθ)) shifts along the surface representing the
graph of F (X).
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F (X) is strictly concave ⇒ if for all X0, X1 and θ ∈ (0, 1), F (Xθ) > F θ.
F (X) is concave ⇒ if for all X0, X1 and θ ∈ [0, 1], F (Xθ) ≥ F θ.
F (X) is strictly convex ⇒ if for all X0, X1 and θ ∈ (0, 1), F (Xθ) < F θ.
F (X) is convex ⇒ if for all X0, X1 and θ ∈ [0, 1], F (Xθ) ≤ F θ.

Example: 9x
1/3
1 x

1/3
2 .

Assume that F is twice differentiable.
Theorem 1: F (X) is concave, ⇔ v′HF v is negative semidefinite for all X.
v′HFv is negative definite for all X ⇒ F (X) is strictly concave.
Proof: By Taylor’s theorem, there exist X̄0 ∈ [X0, Xθ] and X̄1 ∈ [Xθ, X1] such that

F (X1) = F (Xθ) +∇F (Xθ)(X1 −Xθ) +
1

2
(X1 −Xθ)′HF (X̄1)(X1 −Xθ)

F (X0) = F (Xθ) +∇F (Xθ)(X0 −Xθ) +
1

2
(X0 −Xθ)′HF (X̄0)(X0 −Xθ)

⇒ F θ = F (Xθ) +
θ(1− θ)

2
(X1 −X0)′[HF (X̄0) + HF (X̄1)](X1 −X0).

Theorem 2: If F (X) is concave and ∇F (X0) = 0, then X0 is a global maximum.
If F (X) is strictly concave and ∇F (X0) = 0, then X0 is a unique global maximum.
Proof: By theorem 1, X0 must be a local maximum. If it is not a global maximum,
then there exists X1 such that F (X1) > F (X0), which implies that F (Xθ) > F (X0)
for θ close to 0. Therefore, X0 is not a local maximum, a contradiction.

Remark 1 (boundary or corner solution): The boundary or corner condition Fi(X) ≤
0, xiFi(X) = 0 (or Fi(X) ≥ 0, (xi − ai)Fi(X) = 0) becomes sufficient for global
maximum.
Remark 2 (minimization problem): For the minimization problem, we replace con-
cavity with convexity and negative definite with positive definite. If F (X) is convex
and ∇F (X∗) = 0, then X∗ is a global minimum.
If F (X) is strictly convex and ∇F (X∗) = 0, then X∗ is a unique global minimum.

8.8 Learning and utility maximization

Consumer B’s utility function is

U = u(x, k) + m− h(k), x, m, k ≥ 0,

where x is the quantity of commodity X consumed, k is B’s knowledge regard-
ing the consumption of X, m is money, u(x, k) is the utility obtained, ∂2u

∂x2 < 0,
∂2u
∂x∂k

> 0 (marginal utility of X increases with k), and h(k) is the disutility of acquir-
ing/maintaining k, h′ > 0, h′′ > 0. Assume that B has 100 dollar to spend and the
price of X is Px = 1 so that m = 100− x and U = u(x, k) + 100− x− h(k). Assume
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also that k is fixed in the short run. The short run utility maximization problem
is

max
x

u(x, k) + 100− x− h(k), ⇒ FOC:
∂u

∂x
− 1 = 0, SOC:

∂2u

∂x2
< 0.

The short run comparative static dx
dk

is derived from FOC as

dx

dk
= − ∂2u/∂x2

∂2u/∂x∂k
> 0,

that is, consumer B will consume more of X if B’s knowledge of X increases.

In the long run consumer B will change k to attain higher utility level. The long run
utility maximization problem is

max
x,k

u(x, k) + 100− x− h(k), ⇒ FOC:
∂u

∂x
− 1 = 0,

∂u

∂k
− h′(k) = 0.

The SOC is satisfied if we assume that u(x, k) is concave and h(k) is convex (h′′(k) >
0), because F (x, k) ≡ u(x, k) + 100− x− h(k), x, k ≥ 0 is strictly concave then.

Consider now the specific case when

u(x, k) = 3x2/3k1/3 and h(k) = 0.5k2.

1. Calculate consumer B’s short run consumption of X, xs = x(k). (In this part,
you may ignore the nonnegative constraint m = 100−x ≥ 0 and the possibility
of a corner solution.)
x = 1/(8k).

2. Calculate the long run consumption of X, xL.
x = 32

3. Derive the short run value function V (k) ≡ u(x(k), k) + 100− x(k)− h(k).

4. Solve the maximization problem maxk V (k).
k = 4.

5. Explain how the SOC is satisfied and why the solution is the unique global
maximum.

(demand functions) Consider now the general case when Px = p so that

U = 3x2/3k1/3 + 100− px− 0.5k2.

1. Calculate consumer B’s short run demand function of X, xs = x(p; k). (Warn-
ing: There is a nonnegative constraint m = 100 − px ≥ 0 and you have to
consider both interior and corner cases.)
xs(p) = 8kp−3 (100/p) if p ≤

√
2k/5 (p <

√
2k/5).

2. Calculate the long run demand function of X, xL(p). and the optimal level of
K, kL(p). (Both interior and corner cases should be considered too.)
xL(p) = 32p−5 (100/p) if p > (8/25)1/4 (p < (8/25)1/4), kL(p) = [xL(p)]2/5.
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8.9 Homogeneous and homothetic functions

A homogeneous function of degree k is f(x1, . . . , xn) such that

f(hx1, . . . , hxn) = hkf(x1, . . . , xn) ∀h > 0.

If f is homogeneous of degree k1 and g homogeneous of degree k2, then fg is homoge-

neous of degree k1 + k2,
f

g
is homogeneous of degree k1− k2, and fm is homogeneous

of degree mk1.

If Q = F (x1, x2) is homogeneous of degree 1, then Q = x1F (1,
x2

x1
) ≡ x1f

(

x2

x1

)

. If

m = H(x1, x2) is homogeneous of degree 0, then m = H(1,
x2

x1
) ≡ h

(

x2

x1

)

.

Euler theorem: If f(x1, . . . , xn) is homogeneous of degree k, then

x1f1 + . . . + xnfn = kf

If f is homogeneous of degree k, then fi is homogenous of degree k − 1.

Examples: 1. Cobb-Douglas function Q = Axα
1 xβ

2 is homogeneous of degree α + β.

2. CES function Q = {axρ
1 + bxρ

2}
k
ρ is homogenous of degree k.

3. A quadratic form x′Ax is homogeneous of degree 2.
4. Leontief function Q = min {ax1, bx2} is homogeneous of degree 1.

Homothetic functions: If f is homogeneous and g = H(f), H is a monotonic
increasing function, then g is called a homothetic function.

Example: Q = α ln x1 + β ln x2 = ln
(

xα
1 xβ

2

)

is homothetic.

The MRS of a homothetic function depends only on the ratio
x2

x1

.

8.10 Problems

1. Use Newton’s method to find the root of the nonlinear equation X3+2X+2 = 0
accurate to 2 digits.

2. Find (a) lim
X→0

1− 2−X

X
, (b) lim

X→0+

1− e−aX

X
, (c) lim

X→0

e2X − eX

X
.

3. Given the total cost function C(Q) = eaQ+b, use L’hôpital’s rule to find the
AVC at Q = 0+.

4. Let z = x1x2 + x2
1 + 3x2

2 + x2x3 + x2
3.

(a) Use matrix multiplication to represent z.
(b) Determine whether z is positive definite or negative definite.
(c) Find the extreme value of z. Check whether it is a maximum or a minimum.
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5. The cost function of a competitive producer is C(Q; K) =
Q3

3K
+ K, where K

is, say, the plant size (a fixed factor in the short run).

(a) At which output level, the SAC curve attains a minimum?

(b) Suppose that the equilibrium price is p = 100. The profit is Π = 100Q−
Q3

3K
− K. For a given K, find the supply quantity Q(K) such that SR

profit is maximized.

(c) Calculate the SR maximizing profit π(K).

(d) Find the LR optimal K = K∗ to maximize π(K).

(e) Calculate the LR supply quantity Q∗ = Q(K∗).

(f) Now solve the 2-variable maximization problem

max
Q,K≥0

Π(Q, K) = pQ− C(Q) = 100Q− Q3

3K
−K.

and show that Π(Q, K) is concave so that the solution is the unique global
maximum.

6. A competitive firm produces two joint products. The total cost function is
C(q1, q2) = 2q2

1 + 3q2
2 − 4q1q2.

(a) Use the first order conditions for profit maximization to derive the supply
functions.
(b) Check that the second order conditions are satisfied.

7. Check whether the function f(x, y) = ex+y is concave, convex, or neither.

8. (a) Check whether f(x, y) = 2 lnx+3 ln y−x−2y is concave, convex, or neither.
(Assume that x > 0 and y > 0.)
(b) Find the critical point of f .
(c) Is the critical point a local maximum, a global maximum, or neither?

9. Suppose that a monopoly can produce any level of output at a constant marginal
cost of $c per unit. Assume that the monopoly sells its goods in two different
markets which are separated by some distance. The demand curve in the first
market is given by Q1 = exp[−aP1] and the curve in the second market is given
by Q2 = exp[−bP2]. If the monopolist wants to maximize its total profits, what
level of output should be produced in each market and what price will prevail in
each market? Check that your answer is the unique global maximum. (Hints: 1.
P1 = −(1/a) ln Q1 and P2 = −(1/b) ln Q2. 2. Π = P1Q1 + P2Q2− (Q1 + Q2)c =
−(1/a)Q1 ln Q1 − (1/b)Q2 ln Q2 − (Q1 + Q2)c is strictly concave.)

10. The production function of a competitive firm is given by q = f(x1, x2) =

3x
1

3

1 x
1

3

2 , where x1 is a variable input and x2 is a fixed input. Assume that the
prices of the output and the fixed input are p = w2 = 1. In the short run,
the amount of the fixed input is given by x2 = x̄2. The profit function of the
competitive firm is given by π = f(x1, x̄2)− w1x1 − x̄2.
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(a) State the FOC for the SR profit maximization and calculate the SR input

demand function xS
1 = xS

1 (w1) and the SR input demand elasticity w1

xS
1

∂xS
1

∂w1
.

(b) Now consider the LR situation when x2 can be adjusted. State the FOC
for LR profit maximization and calculate the LR input demand funtion

xL
1 = xL

1 (w1) and the LR input demand elasticity w1

xL
1

∂xL
1

∂w1
.

(c) Verify the Le Châtelier principle:
∣

∣

∣

w1

xL
1

∂xL
1

∂w1

∣

∣

∣
>
∣

∣

∣

w1

xS
1

∂xS
1

∂w1

∣

∣

∣
.

(d) Show that the LR profit is a strictly concave function of (x1, x2) for x1, x2 >
0 and therefore the solution must be the unique global maximum.

11. Let U(x, y) = xay + xy2, x, y, a > 0.

(a) For what value(s) of a U(x, y) is homogeneous?.

(b) For what value(s) of a U(x, y) is homothetic?
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9 Optimization and Equality Constraints and Nonlinear Pro-
gramming

In some maximization problems, the agents can choose only values of (x1, . . . , xn)
that satisfy certain equalities. For example, a consumer has a budget constraint
p1x1 + · · ·+ pnxn = m.

max
x1,...,xn

U(x) = U(x1, . . . , xn) subject to p1x1 + · · ·+ pnxn = m.

The procedure is the same as before. (1) Use FOC to find critical points; (2) use
SOC to check whether a critical point is a local maximum, or show that U(X) is
quasi-concave so that a critical point must be a global maximum.
Define B = {(x1, . . . , xn) such that p1x1 + · · ·+ pnxn = m}.
A local maximum X∗ = (x∗

1, . . . , x
∗
n): ∃ǫ > 0 such that U(X∗) ≥ U(X) for all X ∈ B

satisfying xi ∈ (x∗
i − ǫ, x∗

i + ǫ) ∀i.
A critical point: A X∗ ∈ B satisfying the FOC for a local maximum.
A global maximum X∗: F (X∗) ≥ F (X) ∀X ∈ B.
A unique global maximum X∗: F (X∗) > F (X) ∀X ∈ B, X 6= X∗.
To define the concept of a critical point, we have to know what is the FOC first.

9.1 FOC and SOC for a constraint maximization

Consider the 2-variable utility maximization problem:

max
x1,x2

U(x1, x2) subject to p1x1 + p2x2 = m.

Using the budget constraint, x2 =
m− p1x1

p2

= h(x1),
dx2

dx1

= −p1

p2

= h′(x1), and it

becomes a single variable maximization problem:

max
x1

U

(

x1,
m− p1x1

p2

)

, FOC:
dU

dx1
= U1 + U2

(

−p1

p2

)

= 0, SOC:
d2U

dx2
1

< 0.

d2U

dx2
1

= U11 − 2
p1

p2

U12 +

(

p1

p2

)2

U22 =
−1

p2
2

∣

∣

∣

∣

∣

∣

0 −p1 −p2

−p1 U11 U12

−p2 U21 U22

∣

∣

∣

∣

∣

∣

.

By FOC,
U1

p1
=

U2

p2
≡ λ (MU of $1).

FOC: U1 = p1λ, U2 = p2λ, SOC:

∣

∣

∣

∣

∣

∣

0 U1 U2

U1 U11 U12

U2 U21 U22

∣

∣

∣

∣

∣

∣

> 0.

Alternatively, we can define Lagrangian:

L ≡ U(x1, x2) + λ(m− p1x1 − p2x2)
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FOC: L1 =
∂L
∂x1

= U1 − λp1 = 0, L2 =
∂L
∂x2

= U2 − λp2 = 0, Lλ =
∂L
∂λ

=

m− p1x1 − p2x2 = 0.

SOC:

∣

∣

∣

∣

∣

∣

0 −p1 −p2

−p1 L11 L12

−p2 L21 L22

∣

∣

∣

∣

∣

∣

> 0.

general 2-variable with 1-constraint case:

max
x1,x2

F (x1, x2) subject to g(x1, x2) = 0.

Using the constraint, x2 = h(x1),
dx2

dx1
= −g1

g2
= h′(x1), and it becomes a single

variable maximization problem:

max
x1

F (x1, h(x1)) FOC:
dF

dx1

= F1 + F2h
′(x1) = 0, SOC:

d2F

dx2
1

< 0.

d2F

dx2
1

=
d

dx1

(F1 + F2h
′) = F11 + 2h′F12 + (h′)

2
F22 + F2h

′′

h′′ =
d

dx1

(

−g1

g2

)

=
−1

g2

[

g11 + 2g12h
′ + g22(h

′)2
]

.

⇒ d2F

dx2
1

=

(

F11 −
F2

g2

g11

)

+ 2

(

F12 −
F2

g2

g12

)

h′ +

(

F22 −
F2

g2

g22

)

(h′)2

= −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 −h′ 1

−h′ F11 −
F2

g2
g11 F12 −

F2

g2
g12

1 F21 −
F2

g2

g21 F22 −
F2

g2

g22

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
−1

g2
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 g1 g2

g1 F11 −
F2

g2
g11 F12 −

F2

g2
g12

g2 F21 −
F2

g2

g21 F22 −
F2

g2

g22

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

By FOC,
F1

g1

=
F2

g2

≡ λ (Lagrange multiplier).

Alternatively, we can define Lagrangian:

L ≡ F (x1, x2)− λg(x1, x2)

FOC: L1 =
∂L
∂x1

= F1−λg1 = 0, L2 =
∂L
∂x2

= F2− λg2 = 0, Lλ =
∂L
∂λ

= −g(x1, x2) =

0.

SOC:

∣

∣

∣

∣

∣

∣

0 g1 g2

g1 L11 L12

g2 L21 L22

∣

∣

∣

∣

∣

∣

> 0.

n-variable 1-constraint case:

max
x1,...,xn

F (x1, . . . , xn) subject to g(x1, . . . , xn) = 0.

L ≡ F (x1, . . . , xn)− λg(x1, . . . , xn)
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FOC: Li =
∂L
∂xi

= Fi − λgi = 0, i = 1, . . . , n, Lλ =
∂L
∂λ

= −g(x1, . . . , xn) = 0.

SOC:

∣

∣

∣

∣

0 −g1

−g1 L11

∣

∣

∣

∣

< 0,

∣

∣

∣

∣

∣

∣

0 −g1 −g2

−g1 L11 L12

−g2 L21 L22

∣

∣

∣

∣

∣

∣

> 0

∣

∣

∣

∣

∣

∣

∣

∣

0 −g1 −g2 −g3

−g1 L11 L12 L13

−g2 L21 L22 L23

−g3 L31 L32 L33

∣

∣

∣

∣

∣

∣

∣

∣

< 0, etc.

9.2 Examples

Example 1: maxF (x1, x2) = −x2
1 − x2

2 subject to x1 + x2 = 1.
L = −x2

1 − x2
2 + λ(1− x1 − x2).

FOC: L1 = −2x1 − λ = 0, L2 = −2x2 − λ = 0 and Lλ = 1− 2x1 − 2x2 = 0.

Critical point:

(

x1

x2

)

=







1

2
1

2






, λ = −1.

SOC:

∣

∣

∣

∣

∣

∣

0 1 1
1 −2 0
1 0 −2

∣

∣

∣

∣

∣

∣

= 4 > 0.

⇒
(

1/2
1/2

)

is a local maximum.

- x1

6
x2
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6
x2
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Example 2: maxF (x1, x2) = x1 + x2 subject to x2
1 + x2

2 = 1.
L = x1 + x2 + λ(1− x2

1 − x2
2).

FOC: L1 = 1− 2λx1 = 0, L2 = 1− 2λx2 = 0 and Lλ = 1− x2
1 − x2

2 = 0.
Two critical points: x1 = x2 = λ = 1/

√
2 and x1 = x2 = λ = −1/

√
2.

SOC:

∣

∣

∣

∣

∣

∣

0 −2x1 −2x2

−2x1 −2λ 0
−2x2 0 −2λ

∣

∣

∣

∣

∣

∣

= 8λ(x2
1 + x2

2).

⇒ x1 = x2 = λ = 1/
√

2 is a local maximum and x1 = x2 = λ = −1/
√

2 is a local
minimum.
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9.3 Cost minimization and cost function

min C(x1, x2; w1, w2) = w1x1 + w2x2 subject to xa
1x

1−a
2 = q, 0 < a < 1.

L = w1x1 + w2x2 + λ(q − xa
1x

1−a
2 ).

FOC: L1 = w1−aλxa−1
1 x1−a

2 = 0, L2 = w2− (1−a)λxa
1x

−a
2 = 0, Lλ = q−xa

1x
1−a
2 = 0.

⇒ w1

w2

=
ax2

(1− a)x1

⇒ x1 = q

[

aw2

(1− a)w1

]1−a

, x2 = q

[

(1− a)w1

aw2

]a

.

SOC:
∣

∣

∣

∣

∣

∣

0 −axa−1
1 x1−a

2 −(1− a)xa
1x

−a
2

−axa−1
1 x1−a

2 a(1− a)λxa−2
1 x1−a

2 −a(1− a)λxa−1
1 x−a

2

−(1− a)xa
1x

−a
2 −a(1− a)λxa−1

1 x−a
2 a(1− a)λxa

1x
−a−1
2

∣

∣

∣

∣

∣

∣

= −a(1− a)q3λ

(x1x2)2
< 0.

⇒ x1 = q

[

aw2

(1− a)w1

]1−a

, x2 = q

[

(1− a)w1

aw2

]a

is a local minimum.

The total cost is C(w1, w2, q) = q

[

(

a

1− a

)1−a

+

(

1− a

a

)a
]

wa
1w

1−a
2 .

9.4 Utility maximization and demand function

max U(x1, x2) = a ln x1 + b ln x2 subject to p1x1 + p2x2 = m.
L = a ln x1 + b ln x2 + λ(m− p1x1 − p2x2).

FOC: L1 =
a

x1
− λp1 = 0, L2 =

b

x2
− λp2 = 0 and Lλ = m− p1x1 − p2x2 = 0.

⇒ a

b

x2

x1
=

p1

p2
⇒ x1 =

am

(a + b)p1
, x2 =

bm

(a + b)p2

SOC:

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 −p1 −p2

−p1
−a

x2
1

0

−p2 0
−b

x2
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
ap2

2

x2
1

+
bp2

1

x2
2

> 0.

⇒ x1 =
am

(a + b)p1

, x2 =
bm

(a + b)p2

is a local maximum.

9.5 Quasi-concavity and quasi-convexity

As discussed in the intermediate microeconomics course, if the MRS is strictly de-
creasing along an indifference curve (indifference curve is convex toward the origin),
then the utility maximization has a unique solution. A utility function U(x1, x2)

is quasi-concave if MRS (=
U1

U2
) is decreasing along every indifference curve. In

case MRS is strictly decreasing, the utility function is strictly quasi-concave. If
U(x1, x2) is (strictly) quasi-concave, then a critical point must be a (unique) global
maximum.

Two ways to determine whether U(x1, x2) is quasi-concave: (1) the set {(x1, x2) ∈
R2 U(x1, x2) ≥ Ū} is convex for all Ū . (Every indifference curve is convex toward the
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origin.)

(2)
d

dx1

(

−U1

U2

)∣

∣

∣

∣

U(x1,x2)=Ū

> 0. (MRS is strictly decreasing along every indifference

curve.)

In sections 6.14 and 7.7 we used F (X) to define two sets, G+
F and G−

F , and we say
that F (X) is concave (convex) if G−

F (G+
F ) is a convex set. Now we say that F (X) is

quasi-concave (quasi-convex) if every y-cross-section of G−
F (G+

F ) is a convex set. A
y-cross-section is formally defined as

G−
F (ȳ) ≡ {(x1, x2)| F (x1, x2) ≥ ȳ} ⊂ R2, G+

F (ȳ) ≡ {(x1, x2)| F (x1, x2) ≤ ȳ} ⊂ R2.

Clearly, G−
F is the union of all G−

F (ȳ): G−
F = ∪ȳG

−
F (ȳ).

Formal definition: F (x1, . . . , xn) is quasi-concave if ∀X0, X1 ∈ A and 0 ≤ θ ≤ 1,
F (Xθ) ≥ min{F (X0), F (X1)}.
F (x1, . . . , xn) is strictly quasi-concave if ∀X0 6= X1 ∈ A and 0 < θ < 1, F (Xθ) >
min{F (X0), F (X1)}.

-x1

6
x2

- x1

6
x2

@
@

@
@@

@

If F is (strictly) concave, then F must be (strictly) quasi-concave.
Proof: If F (Xθ) < min{F (X0), F (X1)}, then F (Xθ) < (1 − θ)F (X0) + θF (X1).
Geometrically, if G−

F is convex, then G−
F (ȳ) must be convex for every ȳ.

If F is quasi-concave, it is not necessarily that F is concave.
Counterexample: F (x1x2) = x1x2, x1, x2 > 0 is strictly quasi-concave but not con-
cave. In this case, every G−

F (ȳ) is convex but still G−
F is not convex.

Bordered Hessian: |B1| ≡
∣

∣

∣

∣

0 F1

F1 F11

∣

∣

∣

∣

, |B2| ≡

∣

∣

∣

∣

∣

∣

0 F1 F2

F1 F11 F12

F2 F21 F22

∣

∣

∣

∣

∣

∣

, |B3| ≡

∣

∣

∣

∣

∣

∣

∣

∣

0 F1 F2 F3

F1 F11 F12 F13

F2 F21 F22 F23

F3 F31 F32 F33

∣

∣

∣

∣

∣

∣

∣

∣

,

etc.

Theorem 1: Suppose that F is twice differentiable. If F is quasi-concave, then
|B2| ≥ 0, |B3| ≤ 0, etc. Conversely, if |B1| < 0, |B2| > 0, |B3| < 0, etc., then
F is strictly quasi-concave.

Proof (n = 2):
dMRS

dx1
=
|B2|
F 3

2

and therefore F is quasi-concave if and only if |B2| ≥ 0.
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Consider the following maximization problem with a linear constraint.

max
x1,...,xn

F (x1, . . . , xn) subject to a1x1 + · · ·+ anxn = b.

Theorem 2: If F is (strictly) quasi-concave and X0 satisfies FOC, then X0 is a
(unique) global maximum.
Proof: By theorem 1, X0 must be a local maximum. Suppose there exists X1 satis-
fying the linear constraint with U(X1) > U(X0). Then U(Xθ) > U(X0), a contra-
diction.

Theorem 3: A monotonic increasing transformation of a quasi-concave function is
a quasi-concave function. A quasi-concave function is a monotonic increasing trans-
formation of a concave function.
Proof: A monotonic increasing transformation does not change the sets {(x1, x2) ∈
R2 U(x1, x2) ≥ Ū}. To show the opposite, suppose that f(x1, x2) is quasi-concave.
Define a monotonic transformation as

g(x1, x2) = H(f(x1, x2)) where H−1(g) = f(x, x).

9.6 Elasticity of Substitution

Consider a production function Q = F (x1, x2).

Cost minimization ⇒ w1

w2
=

F1

F2
≡ θ. Let

x2

x1
≡ r. On an isoquant F (x1, x2) = Q̄,

there is a relationship r = φ(θ). The elasticity of substitution is defined as σ ≡ θ

r

dr

dθ
.

If the input price ratio θ =
w1

w2
increases by 1%, a competitive producer will increase

its input ratio r =
x2

x1
by σ%.

Example: For a CES function Q = {axρ
1 + bxρ

2}
k
ρ , σ =

1

1− ρ
.

9.7 Problems

1. Let A =

(

a11 a12

a21 a22

)

, B =





0 c1 c2

c1 a11 a12

c2 a21 a22



, and C =

(

−c2

c1

)

.

(a) Calculate the determinant |B|.
(b) Calculate the product C ′AC. Does |B| have any relationship with C ′AC?

2. Consider the utility function U(x1, x2) = xα
1 xβ

2 .

(a) Calculate the marginal utilities U1 =
∂U

∂x1
and U2 =

∂U

∂x2
.

(b) Calculate the hessian matrix H =

(

U11 U12

U21 U22

)

.
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(c) Calculate the determinant of the matrix B =





0 U1 U2

U1 U11 U12

U2 U21 U22



.

(d) Let C =

(

−U2

U1

)

. Calculate the product C’HC.

3. Use the Lagrangian multiplier method to find the critical points of f(x, y) =
x+y subject to x2 +y2 = 2. Then use the bordered Hessian to determine which
point is a maximum and which is a minimum. (There are two critical points.)

4. Determine whether f(x, y) = xy is concave, convex, quasiconcave, or quasicon-
vex. (x > 0 and y > 0.)

5. Let U(x, y), U, x, y > 0, be a homogenous of degree 1 and concave function with
Uxy 6= 0.

(a) Show that V (x, y) = [U(x, y)]a is strictly concave if 0 < a < 1 and V (x, y)
is strictly quasi-concave for all a > 0. Hint: UxxUyy = [Uxy]

2.

(b) Show that F (x, y) =
(

xβ + yβ
)a/β

, x, y > 0 and −∞ < β < 1 is homoge-
nous of degree 1 and concave if a = 1.

(c) Determine the range of a so that F (x, y) is strictly concave.

(d) Determine the range of a so that F (x, y) is strictly quasi-concave.
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9.8 Nonlinear Programming

The general nonlinear programming problem is:

max
x1,...,xn

F (x1, . . . , xn) subject to



















g1(x1, . . . , xn) ≤ b1
...

gm(x1, . . . , xn) ≤ bm

x1, . . . , xn ≥ 0.

In equality constraint problems, the number of constraints should be less than the
number of policy variables, m < n. For nonlinear programming problems, there is no
such a restriction, m can be greater than or equal to n. In vector notation,

max
x

F (x) subject to g(x) ≤ b, x ≥ 0.

9.9 Kuhn-Tucker condition

Define the Lagrangian function as

L(x, y) = F (x) + y(b− g(x)) = F (x1, . . . , xn) +
m
∑

j=1

yj(bj − gj(x1, . . . , xn)).

Kuhn-Tucker condition: The FOC is given by the Kuhn-Tucker conditions:

∂L

∂xi

=
∂F

∂xi

−
m
∑

j=1

yj
∂gj

∂xi

≤ 0, xi
∂L

∂xi

= 0 xi ≥ 0, i = 1, . . . , n

∂L

∂yj
= bj − gj(x) ≥ 0, yj

∂L

∂yj
= 0 yj ≥ 0, j = 1, . . . , m

Kuhn Tucker theorem: x∗ solves the nonlinear programming problem if (x∗, y∗)
solves the saddle point problem:

L(x, y∗) ≤ L(x∗, y∗) ≤ L(x∗, y) for all x ≥ 0, y ≥ 0,

Conversely, suppose that f(x) is a concave function and gj(x) are convex func-
tions (concave programming) and the constraints satisfy the constraint qualifi-
cation condition that there is some point in the opportunity set which satisfies
all the inequality constraints as strict inequalities, i.e., there exists a vector
x0 ≥ 0 such that gj(x0) < bj , j = 1, . . . , m, then x∗ solves the nonlinear pro-
gramming problem only if there is a y∗ for which (x∗, y∗) solves the saddle point
problem.

If constraint qualification is not satisfied, it is possible that a solution does not satisfy
the K-T condition. If it is satisfied, then the K-T condition will be necessary. For
the case of concave programming, it is also sufficient.
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In economics applications, however, it is not convenient to use K-T condition to
find the solution. In stead, we first solve the equality constraint version of the problem
and then use K-T condition to check or modify the solution when some constraints
are violated.

The K-T condition for minimization problems: the inequalities reversed.

9.10 Examples

Example 1. (Joint product profit maximization) The cost function of a competitive
producer producing 2 joint products is c(x1, x2) = x2

1 +x1x2 +x2
2. The profit function

is given by π(p1, p2) = p1x1 + p2x2 − (x2
1 + x1x2 + x2

2).

max
x1≥0,x2≥0

f(x1, x2) = p1x1 + p2x2 − (x2
1 + x1x2 − x2

2)

K-T condition: f1 = p1 − 2x1 − x2 ≤ 0, f2 = p2 − x1 − 2x2 ≤ 0, xifi = 0, i = 1, 2.
Case 1. p1/2 < p2 < 2p1.
x1 = (2p1 − p2)/3, x2 = (2p2 − p1)/3.

Case 2. 2p1 < p2.
x1 = 0, x2 = p2/2.

Case 3. 2p2 < p1.
x1 = p1/2, x2 = 0.

Example 2. The production function of a producer is given by q = (x1+1)(x2+1)−1.
For q = 8, calculate the cost function c(w1, w2).

min
x1≥0,x2≥0

w1x1 + w2x2 subject to − [(x1 + 1)(x2 + 1)− 1] ≥ −8

Lagrangian function: L = w1x1 + w1x2 + λ[(x1 + 1)(x2 + 1)− 9].
K-T conditions: L1 = w1−λ(x2−1) ≥ 0, L2 = w2−λ(x2−1) ≥ 0, xiLi = 0, i = 1, 2,
and Lλ = (x1 + 1)(x2 + 1)− 9 ≥ 0, λLλ = 0.

Case 1. w1/9 < w2 < 9w1.
x1 =

√

9w2/w1 − 1, x2 =
√

9w1/w2 − 1 and c(w1, w2) = 6
√

w1w2 − w1 − w2.

Case 2. 9w1 < w2.
x1 = 8, x2 = 0, and c(w1, w2) = 8w1.

Case 3. 9w2 < w1.
x1 = 0, x2 = 8, c(w1, w2) = 8w2.
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Example 3. The utility function of a consumer is U(x1, x2) = x1(x2+1). The market
price is p1 = p2 = 1 and the consumer has $11. Therefore the budget constraint is
x1 + x2 ≤ 11. Suppose that both products are under rationing. Besides the money
price, the consumer has to pay ρi rationing points for each unit of product i consumed.
Assume that ρ1 = 1 and ρ2 = 2 and the consumer has q rationing points. The
rationing point constraint is x1 +2x2 ≤ q. The utility maximization problem is given
by

max
x1,x2

U(x1, x2) = x1(x2 +1) subject to x1 +x2 ≤ 11, x1 +2x2 ≤ q, x1, x2 ≥ 0.

Lagrangian function: L = x1(x2 + 1) + λ1(11− x1 − x2) + λ2(q − x1 − 2x2).
K-T conditions: L1 = x2 +1−λ1−λ2 ≤ 0, L2 = x1−λ1−2λ2 ≤ 0, xiLi = 0, i = 1, 2,
and Lλ1

= 11− x1 − x2 ≥ 0, Lλ2
= q − x1 − 2x2 ≥ 0 λiLλi

= 0.

Case 1: q < 2.
x1 = q, x2 = 0, λ1 = 0, and λ2 = 1.

Case 2: 2 ≤ q ≤ 14.
x1 = (q + 2)/2, x2 = (q − 2)/4, λ1 = 0, and λ2 = (q + 2)/4.

Case 3: 14 < q ≤ 16.
x1 = 22− q, x2 = q − 11, λ1 = 3(q − 14), and λ2 = 2(16− q).

Case 4: 16 < q.
x1 = 6, x2 = 5, λ1 = 6, and λ2 = 0.

9.11 Problems

1. Given the individual utility function U(X, Y ) = 2
√

X + Y ,
a) show that U is quasi-concave for X ≥ 0 and Y ≥ 0,
b) state the Kuhn-Tucker conditions of the following problem:

max
X≥0, Y ≥0

2
√

X + Y

s. t. PXX + PY Y ≤ I,

c) derive the demand functions X(PX , PY , I) and Y (PX , PY , I) for the case I ≥ P 2
Y

PX
,

check that the K-T conditions are satisfied,

d) and do the same for I <
P 2

Y

PX
.

e) Given that I = 1 and PY = 1, derive the ordinary demand function X = D(PX).
f) Are your answers in (c) and (d) global maximum? Unique global maximum? Why
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or why not?

2. A farm has a total amount of agricultural land of one acre. It can produce two
crops, corn (C) and lettuce (L), according to the production functions C = NC and
L = 2

√
NL respectively, where NC (NL) is land used in corn (lettuce) production.

The prices of corn and lettuce are p and q respectively. Thus, if the farm uses NC

of land in corn production and NL in lettuce production, (NC ≥ 0, NL ≥ 0, and
NC + NL ≤ 1) its total revenue is pNC + 2q

√
NL.

a) Suppose the farm is interested in maximizing its revenue. State the revenue max-
imization problem and the Kuhn-Tucker conditions.
b) Given that q > p > 0, how much of each output will the farm produce? Check
that the K-T conditions are satisfied.
c) Given that p ≥ q > 0, do the same as (b).

3. Suppose that a firm has two activities producing two goods “meat” (M) and
“egg” (E) from the same input “chicken” (C) according to the production functions

M = CM and E = C
1/2
E , where CM (respectively CE) ≥ 0 is the q. Suppose in the

short run, the firm has C̄ units of chicken that it must take as given and suppose that
the firm faces prices p > 0, q > 0 of meat and egg respectively.
a) Show that the profit function π = pCM + qC0.5

E is quasi-concave in (CM , CE).
b) Write down the short run profit maximization problem.
c) State the Kuhn-Tucker conditions.
d) Derive the short run supply functions. (There are two cases.)
e) Is your solution a global maximum? Explain.

4. State the Kuhn-Tucker conditions of the following nonlinear programming problem

max U(X, Y ) = 3 lnX + ln Y
s. t. 2X + Y ≤ 24

X + 2Y ≤ 24
X ≥ 0, Y ≥ 0.

Show that X = 9, Y = 6, λ1 = 1/6, and λ2 = 0 satisfy the Kuhn-Tucker conditions.
What is the economic interpretations of λ1 = 1/6 and λ2 = 0 if the first constraint is
interpreted as the income constraint and the second constraint as the rationing point
constraint of a utility maximization problem?

9.12 Linear Programming – A Graphic Approach

Example 1 (A Production Problem). A manufacturer produces tables x1 and
desks x2. Each table requires 2.5 hours for assembling (A), 3 hours for buffing (B),
and 1 hour for crating (C). Each desks requires 1 hour for assembling (A), 3 hours
for buffing (B), and 2 hours for crating (C). The firm can use no more than 20 hours
for assembling, 30 hours for buffing, and 16 hours for crating each week. Its profit
margin is $3 per table and $4 per desk.
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max Π = 3x1 + 4x2 (4)

subject to 2.5x1 + x2 ≤ 20 (5)

3x1 + 3x2 ≤ 30 (6)

x1 + 2x2 ≤ 16 (7)

x1, x2 ≥ 0. (8)

extreme point: The intersection of two constraints.
extreme point theorem: If an optimal feasible value of the objective function exists,
it will be found at one of the extreme points.

In the example, There are 10 extreme points, but only 5 are feasible: (0 ,0), (8,
0), (62

3
, 31

3
), (4, 6), and (0, 8), called basic feasible solutions. At (4, 6), Π = 36 is the

optimal.
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Example 2 (The Diet Problem). A farmer wants to see that her herd gets the
minimum daily requirement of three basic nutrients A, B, and C. Daily requirements
are 14 for A, 12 for B, and 18 for C. Product y1 has 2 units of A and 1 unit each of
B and C; product y2 has 1 unit each of A and B and 3 units of C. The cost of y1 is
$2, and the cost of y2 is $4.

min c = 2y1 + 4y2 (9)

subject to 2y1 + y2 ≥ 14 (10)

y1 + y2 ≥ 12 (11)

y1 + 3y2 ≥ 18 (12)

y1, y2 ≥ 0. (13)
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Slack and surplus variables: To find basic solutions, equations are needed. This is
done by incorporating a separate slack or surplus variable si into each inequality.
In example 1, the system becomes

2.5x1 + x2 + s1 = 20 3x1 + 3x2 + s2 = 30 x1 + 2x2 + s3 = 16.

In matrix for,





2.5 1 1 0 0
3 3 0 1 0
1 2 0 0 1

















x1

x2

s1

s2

s3













=





20
30
16



 .

In example 2, the inequalities are ”≥” and the surplus variables are substracted:

2y1 + y2 − s1 = 14 y1 + y2 − s2 = 12 y1 + 3y2 − s3 = 18.

In matrix for,





2 1 −1 0 0
1 1 0 −1 0
1 3 0 0 −1

















y1

y2

s1

s2

s3













=





14
12
18



 .

For a system of m equations and n variables, where n > m, a solution in which at
least n −m variables equal to zero is an extreme point. Thus by setting n −mand
solving the m equations for the remaining m variables, an extreme point can be found.
There are n!/m!(n−m)! such solutions.

9.13 Linear programming – The simplex algorithm

The algorithm moves from one basic feasible solution to another, always improving
upon the previous solutions, until the optimal solution is reached. In each step, those
variables set equal to zero are called not in the basis and those not set equal to zero
are called in the basis. Let use example one to illustrate the procedure.

1. The initial Simplex Tableau

x1 x2 s1 s2 s3 Constant
2.5 1 1 0 0 20
3 3 0 1 0 30
1 2 0 0 1 16
-3 -4 0 0 0 0

The first basic feasible solution can be read from the tableau as x1 = 0, x2 = 0,
s1 = 20, s2 = 30, and s3 = 16. The value of Π is zero.

2. The Pivot Element and a change of Basis
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(a) The negative indicator with the largest absolute value determines the vari-
able to enter the basis. Here it is x2. The x2 column is called the pivot
column (j-th column).

(b) The variable to be eliminated is determined by the smallest displacement
ratio. Displacement ratios are found by dividing the elements of the con-
stant column by the elements of the pivot column. Here the smallest is
16/2=8 and row 3 is the pivot row (i-th row). The pivot element is 2.

3. (Pivoting) and we are going to move to the new basic solution with s3 = 0
and x2 > 0. First, divides every element of the pivoting row by the pivoting
element (2 in this example) to make the pivoting element equal to 1. Then
subtracts akj times the pivoting row from k-th row to make the j-th column a
unit vector. (This procedure is called the Gaussian elimination method, usually
used in solving simultaneous equations.) After pivoting, the Tableau becomes
x1 x2 s1 s2 s3 Constant
2 0 1 0 -.5 12

1.5 0 0 1 -1.5 6
.5 1 0 0 .5 8
-1 0 0 0 2 32

The basic solution is x2 = 8, s1 = 12, s2 = 6, and x1 = s3 = 0. The value of Π
is 32.

4. (Optimization) Repeat steps 2-3 until a maximum is reached. In the exam-
ple, x1 column is the new pivoting column. The second row is the pivoting
row and 1.5 is the pivoting element. After pivoting, the tableau becomes
x1 x2 s1 s2 s3 Constant
0 0 1 −4

3
1.5 4

1 0 0 2
3

-1 4
0 1 0 −1

3
1 6

0 0 0 2
3

1 36

The basic solution is x1 = 4, x2 = 6, s1 = 4, and s2 = s3 = 0. The value
of Π is 36. Since there is no more negative indicators, the process stops and the
basic solution is the optimal. s1 = 4 > 0 and s2 = s3 = 0 means that the first
constraint is not binding but the second and third are binding. The indicators
for s2 and s3, t2 = 2

3
and t3 = 1 are called the shadow values, representing the

marginal contributions of increasing one hour for buffing or crating.

Because y1 = y2 = 0 is not feasible, the simplex algorithm for minimization
problem is more complex. Usually, we solve its dual problem.
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9.14 Linear programming – The dual problem

To every linear programming problem there corresponds a dual problem. If the orig-
inal problem, called the primal problem, is

max
x

F = cx subject to Ax ≤ b, x ≥ 0

then the dual problem is

min
y

G = yb subject to yA ≥ c, y ≥ 0

where

A =







a11 . . . a1n
...

. . .
...

am1 . . . amn






, x =







x1
...

xn






, b =







b1
...

bm






, c = (c1, . . . , cn), y = (y1, . . . , ym).

Existence theorem: A necessary and sufficient condition for the existence of a so-
lution is that the opportunity sets of both the primal and dual problems are
nonempty.
Proof: Suppose x, y are feasible. Then Ax ≤ b, yA ≥ c. It follows that
F (x) = cx ≤ yAx and G(y) = yb ≥ yAx. Therefore, F (x) ≤ G(y).

Duality theorem: A necessary and sufficient condition for a feasible vector to rep-
resent a solution is that there exists a feasible vector for the dual problem for
which the values of the objective functions of both problems are equal.

Complementary slackness theorem: A necessary and sufficient condition for fea-
sible vectors x∗ , y∗ to solve the dual problems is that they satisfy the comple-
mentary slackness condition:

(c− y∗A)x∗ = 0 y∗(b− Ax∗) = 0.

Proof: Use Kuhn-Tucker theorem.

Dual of the Diet Problem

max c∗ = 14x1 + 12x2 + 18x3 (14)

subject to 2x1 + x2 + x1 ≤ 2 (15)

x1 + x2 + 3x3 ≤ 4 (16)

x1, x2, x3 ≥ 0. (17)

x1, x2, x3, is interpreted as the imputed value of nutrient A, B, C, respectively.
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10 General Equilibrium and Game Theory

10.1 Utility maximization and demand function

A consumer wants to maximize his utility function subject to his budget constraint:

max U(x1, . . . , xn) subj. to p1x1 + · · ·+ pnxn = I.

Endogenous variables: x1, . . . , xn

Exogenous variables: p1, . . . , pn, I (the consumer is a price taker)
Solution is the demand functions xk = Dk(p1, . . . , pn, I), k = 1, . . . , n

Example: maxU(x1, x2) = a ln x1 + b ln x2 subject to p1x1 + p2x2 = m.
L = a ln x1 + b ln x2 + λ(m− p1x1 − p2x2).

FOC: L1 =
a

x1

− λp1 = 0, L2 =
b

x2

− λp2 = 0 and Lλ = m− p1x1 − p2x2 = 0.

⇒ a

b

x2

x1
=

p1

p2
⇒ x1 =

am

(a + b)p1
, x2 =

bm

(a + b)p2

SOC:

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 −p1 −p2

−p1
−a

x2
1

0

−p2 0
−b

x2
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
ap2

2

x2
1

+
bp2

1

x2
2

> 0.

⇒ x1 =
am

(a + b)p1
, x2 =

bm

(a + b)p2
is a local maximum.

10.2 Profit maximization and supply function

A producer’s production technology can be represented by a production function
q = f(x1, . . . , xn). Given the prices, the producer maximizes his profits:

max Π(x1, . . . , xn; p, p1, . . . , pn) = pf(x1, . . . , xn)− p1x1 − · · · − pnxn

Exogenous variables: p, p1, . . . , pn (the producer is a price taker)
Solution is the supply function q = S(p, p1, . . . , pn) and the input demand functions,
xk = Xk(p, p1, . . . , pn) k = 1, . . . , n

Example: q = f(x1, x2) = 2
√

x1 + 2
√

x2 and Π(x1, x2; p, p1, p2) = p(2
√

x1 + 2
√

x2)−
p1x1 − p2x2,

max
x1.x2

p(2
√

x1 + 2
√

x2)− p1x1 − p2x2

FOC:
∂Π

∂x1
=

p√
x1
− p1 = 0 and

∂Π

∂x2
=

p√
x2
− p2 = 0.

⇒ x1 = (p/p1)
2, x2 = (p/p2)

2 (input demand functions) and
q = 2(p/p1) + 2(p/p2) = 2p( 1

p1
+ 1

p2
) (the supply function)
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Π = p2( 1
p1

+ 1
p2

)
SOC:









∂2Π

∂x2
1

∂2Π

∂x1∂x2

∂2Π

∂x1∂x2

∂2Π

∂x2
1









=









−p

2x
3/2
1

0

0
−p

2x
3/2
2









is negative definite.

10.3 Transformation function and profit maximization

In more general cases, the technology of a producer is represented by a transformation
function: F j(yj

1, . . . , y
j
n) = 0, where (yj

1, . . . , y
j
n) is called a production plan, if yj

k > 0
(yj

k) then k is an output (input) of j.

Example: a producer produces two outputs, y1 and y2, using one input y3. Its
technology is given by the transformation function (y1)

2 + (y2)
2 + y3 = 0. Its profit

is Π = p1y1 + p2y2 + p3y3. The maximization problem is

max
y1,y2,y3

p1y1 + p2y2 + p3y3 subject to (y1)
2 + (y2)

2 + y3 = 0.

To solve the maximization problem, we can eliminate y3: x = −y3 = (y1)
2 +(y2)

2 > 0
and

max
y1,y2

p1y1 + p2y2 − p3[(y1)
2 + (y2)

2].

The solution is: y1 = p1/(2p3), y2 = p2/(2p3) (the supply functions of y1 and y2), and
x = −y3 = [p1/(2p3)]

2 + [p2/(2p3)]
2 (the input demand function for y3).

10.4 The concept of an abstract economy and a competitive equilibrium

Commodity space: Assume that there are n commodities. The commodity space is
Rn

+ = {(x1, . . . , xn); xk ≥ 0}

Economy: There are I consumers, J producers, with initial endowments of com-
modities ω = (ω1, . . . , ωn).
Consumer i has a utility function U i(xi

1, . . . , x
i
n), i = 1, . . . , I.

Producer j has a production transformation function F j(yj
1, . . . , y

j
n) = 0,

A price system: (p1, . . . , pn).

A private ownership economy: Endowments and firms (producers) are owned by
consumers.
Consumer i’s endowment is ωi = (ωi

1, . . . , ω
i
n),
∑I

i=1 ωi = ω.

Consumer i’s share of firm j is θij ≥ 0,
∑I

i=1 θij = 1.

An allocation: xi = (xi
1, . . . , x

i
n), i = 1, . . . , I, and yj = (yj

1, . . . , y
j
n), j = 1, . . . , J .
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A competitive equilibrium:
A combination of a price system p̄ = (p̄1, . . . , p̄n) and an allocation ({x̄i}i=1,...,I , {ȳj}j=1,...,J)
such that
1.
∑

i x̄
i = ω +

∑

j ȳj (feasibility condition).

2. ȳj maximizes Πj, j = 1, . . . , J and x̄i maximizes U i, subject to i’s budget con-
straint p1x

i
1 + . . . + pnxi

n = p1ω
1
1 + . . . + pnωi

n + θi1Π
1 + . . . + θiJΠJ .

Existence Theorem:
Suppose that the utility functions are all quasi-concave and the production transfor-
mation functions satisfy some theoretic conditions, then a competitive equilibrium
exists.

Welfare Theorems: A competitive equilibrium is efficient and an efficient allocation
can be achieved as a competitive equilibrium through certain income transfers.

Constant returns to scale economies and non-substitution theorem:
Suppose there is only one nonproduced input, this input is indispensable to produc-
tion, there is no joint production, and the production functions exhibits constant
returns to scale. Then the competitive equilibrium price system is determined by the
production side only.
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10.5 Multi-person Decision Problem and Game Theory

In this chapter, we consider the situation when there are n > 1 persons with different
objective (utility) functions; that is, different persons have different preferences over
possible outcomes. There are two cases:
1. Game theory: The outcome depends on the behavior of all the persons involved.
Each person has some control over the outcome; that is, each person controls certain
strategic variables. Each one’s utility depends on the decisions of all persons. We
want to study how persons make decisions.

2. Public Choice: Persons have to make decision collectively, eg., by voting.
We consider only game theory here.

Game theory: the study of conflict and cooperation between persons with differ-
ent objective functions.

Example (a 3-person game): The accuracy of shooting of A, B, C is 1/3, 2/3, 1,
respectively. Each person wants to kill the other two to become the only survivor.
They shoot in turn starting A.
Question: What is the best strategy for A?

10.6 Ingredients and classifications of games

A game is a collection of rules known to all players which determine what players
may do and the outcomes and payoffs resulting from their choices.
The ingredients of a game:

1. Players: Persons having some influences upon possible income (decision mak-
ers).

2. Moves: decision points in the game at which players must make choices between
alternatives (personal moves) and randomization points (called nature’s moves).

3. A play: A complete record of the choices made at moves by the players and
realizations of randomization.

4. Outcomes and payoffs: a play results in an outcome, which in turn determines
the rewords to players.

Classifications of games:

1. according to number of players:
2-person games – conflict and cooperation possibilities.
n-person games – coalition formation possibilities in addition.
infinite-players’ games – corresponding to perfect competition in economics.

2. according to number of strategies:
finite – strategy (matrix) games, each person has a finite number of strategies,
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payoff functions can be represented by matrices.
infinite – strategy (continuous or discontinuous payoff functions) games like
duopoly games.

3. according to sum of payoffs:
0-sum games – conflict is unavoidable.
non-zero sum games – possibilities for cooperation.

4. according to preplay negotiation possibility:
non-cooperative games – each person makes unilateral decisions.
cooperative games – players form coalitions and decide the redistribution of
aggregate payoffs.

10.7 The extensive form and normal form of a game

Extensive form: The rules of a game can be represented by a game tree.
The ingredients of a game tree are:
1. Players
2. Nodes: they are players’ decision points (personal moves) and randomization
points (nature’s moves).
3. Information sets of player i: each player’s decision points are partitioned into
information sets. An information set consists of decision points that player i can not
distinguish when making decisions.
4. Arcs (choices): Every point in an information set should have the same number of
choices.
5. Randomization probabilities (of arcs following each randomization points).
6. Outcomes (end points)
7. Payoffs: The gains to players assigned to each outcome.
A pure strategy of player i: An instruction that assigns a choice for each information
set of player i.
Total number of pure strategies of player i: the product of the numbers of choices of
all information sets of player i.

Once we identify the pure strategy set of each player, we can represent the game
in normal form (also called strategic form).

1. Strategy sets for each player: S1 = {s1, . . . , sm}, S2 = {σ1, . . . , σn}.

2. Payoff matrices: π1(si, σj) = aij , π2(si, σj) = bij . A = [aij ], B = [bij ].

Normal form:
II

I @
@

@

σ1 . . . σn

s1 (a11, b11) . . . (a1n, b1n)
...

...
. . .

...
sm (am1, bm1) . . . (amn, bmn)
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10.8 Examples

Example 1: A perfect information game
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8
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)

S1 = { L, R }, S2 = { Ll, Lr, Rl, Rr }.

II

I @
@

@

Ll Lr Rl Rr
L (1,9) (9,6) (1,9) (9,6)
R (3,7)* (8,2) (3,7) (8,2)

Example 2: Prisoners’ dilemma game
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S1 = { L, R }, S2 = { L, R }.

II

I @
@

@

L R
L (4,4) (0,5)
R (5,0) (1,1)*

Example 3: Hijack game
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(

−1
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)

(

2
−2
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S1 = { L, R }, S2 = { L, R }.

II

I @
@

@

L R
L (-1,2) (-1,2)*
R (2,-2)* (-10,-10)

Example 4: A simplified stock price manipulation game
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S1 = { Ll, Lr, Rl, Rr }, S2 = { L, R }.

II

I @
@

@

L R
Ll (4, 3.5) (4, 2)
Lr (3.5, 4.5) (3.5, 4.5)
Rl (5.5, 5)* (4.5, 4.5)
Rr (5,6) (4,7)

Remark: Each extensive form game corresponds a normal form game. However,
different extensive form games may have the same normal form.
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10.9 Strategy pair and pure strategy Nash equilibrium

1. A Strategy Pair: (si, σj). Given a strategy pair, there corresponds a payoff pair
(aij , bij).

2. A Nash equilibrium: A strategy pair (si∗, σj∗) such that ai∗j∗ ≥ aij∗ and bi∗j∗ ≥
bi∗j for all (i, j). Therefore, there is no incentives for each player to deviate from
the equilibrium strategy. ai∗j∗ and bi∗j∗ are called the equilibrium payoff.

The equilibrium payoffs of the examples are marked each with a star in the normal
form.

Remark 1: It is possible that a game does no have a pure strategy Nash equilib-
rium. Also, a game can have more than one Nash equilibria.
Remark 2: Notice that the concept of a Nash equilibrium is defined for a normal form
game. For a game in extensive form (a game tree), we have to find the normal form
before we can find the Nash equilibria.

10.10 Subgames and subgame perfect Nash equilibria

1. Subgame: A subgame in a game tree is a part of the tree consisting of all the
nodes and arcs following a node that form a game by itself.

2. Within an extensive form game, we can identify some subgames.

3. Also, each pure strategy of a player induces a pure strategy for every subgame.

4. Subgame perfect Nash equilibrium: A Nash equilibrium is called subgame
perfect if it induces a Nash equilibrium strategy pair for every subgame.

5. Backward induction: To find a subgame perfect equilibrium, usually we work
backward. We find Nash equilibria for lowest level (smallest) subgames and
replace the subgames by its Nash equilibrium payoffs. In this way, the size of
the game is reduced step by step until we end up with the equilibrium payoffs.

All the equilibria, except the equilibrium strategy pair (L,R) in the hijack game, are
subgame perfect.
Remark: The concept of a subgame perfect Nash equilibrium is defined only for an
extensive form game.

10.10.1 Perfect information game and Zemelo’s Theorem

An extensive form game is called perfect information if every information set consists
only one node. Every perfect information game has a pure strategy subgame perfect
Nash Equilibrium.
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10.10.2 Perfect recall game and Kuhn’s Theorem

A local strategy at an information set u ∈ Ui: A probability distribution over the
choice set at Uij .
A behavior strategy: A function which assigns a local strategy for each u ∈ Ui.
The set of behavior strategies is a subset of the set of mixed strategies.

Kuhn’s Theorem: In every extensive game with perfect recall, a strategically equiva-
lent behavior strategy can be found for every mixed strategy.

However, in a non-perfect recall game, a mixed strategy may do better than be-
havior strategies because in a behavior strategy the local strategies are independent
whereas they can be correlated in a mixed strategy.
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A 2-person 0-sum non-perfect recall game.

NE is (µ∗
1, µ

∗
2) = (

1

2
ac⊕ 1

2
bd,

1

2
A⊕ 1

2
B).

µ∗
1 is not a behavioral strategy.

10.10.3 Reduction of a game

Redundant strategy: A pure strategy is redundant if it is strategically identical to
another strategy.
Reduced normal form: The normal form without redundant strategies.
Equivalent normal form: Two normal forms are equivalent if they have the same
reduced normal form.
Equivalent extensive form: Two extensive forms are equivalent if their normal forms
are equivalent.

10.11 Continuous games and the duopoly game

In many applications, S1 and S2 are infinite subsets of Rm and Rn Player 1 controls
m variables and player 2 controls n variables (however, each player has infinite many
strtategies). The normal form of a game is represented by two functions

Π1 = Π1(x; y) and Π2 = Π2(x; y), where x ∈ S1 ⊂ Rm and y ∈ S2 ⊂ Rn.

To simplify the presentation, assume that m = n = 1. A strategic pair is (x, y) ∈
S1 × S2. A Nash equilibrium is a pair (x∗, y∗) such that

Π1(x∗, y∗) ≥ Π1(x, y∗) and Π2(x∗, y∗) ≥ Π2(x∗, y) for all x ∈ S1 y ∈ S2.
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Consider the case when Πi are continuously differentiable and Π1 is strictly concave
in x and Π2 strictly concave in y (so that we do not have to worry about the SOC’s).

Reaction functions and Nash equilibrium:
To player 1, x is his endogenous variable and y is his exogenous variable. For each y
chosen by player 2, player 1 will choose a x ∈ S1 to maximize his objective function
Π1. This relationship defines a behavioral equation x = R1(y) which can be obtained
by solving the FOC for player 1, Π1

x(x; y) = 0. Similarly, player 2 regards y as en-
dogenous and x exogenous and wants to maximize Π2 for a given x chosen by player
1. Player 2’s reaction function (behavioral equation) y = R2(x) is obtained by solving
Π2

y(x; y) = 0. A Nash equilibrium is an intersection of the two reaction functions.
The FOC for a Nash equilibrium is given by Π1

x(x
∗; y∗) = 0 and Π2

y(x
∗; y∗) = 0.

Duopoly game:
There are two sellers (firm 1 and firm 2) of a product.
The (inverse) market demand function is P = a−Q.
The marginal production costs are c1 and c2, respectively.
Assume that each firm regards the other firm’s output as given (not affected by his
output quantity).
The situation defines a 2-person game as follows: Each firm i controls his own output
quantity qi. (q1, q2) together determine the market price P = a− (q1 + q2) which in
turn determines the profit of each firm:

Π1(q1, q2) = (P−c1)q1 = (a−c1−q1−q2)q1 and Π2(q1, q2) = (P−c2)q2 = (a−c2−q1−q2)q2

The FOC are ∂Π1/∂q1 = a− c1 − q2 − 2q1 = 0 and ∂Π2/∂q2 = a− c2 − q1 − 2q2 = 0.
The reaction functions are q1 = 0.5(a− c1 − q2) and q2 = 0.5(a− c2 − q1).
The Cournot Nash equilibrium is (q∗1 , q

∗
2) = ((a− 2c1 + c2)/3, (a− 2c2 + c1)/3) with

P ∗ = (a + c1 + c2)/3. (We have to assume that a− 2c1 + c2, a− 2c2 + c1 ≥ 0.)

10.11.1 A simple bargaining model

Two players, John and Paul, have $ 1 to divide between them. They agree to spend
at most two days negotiating over the division. The first day, John will make an offer,
Paul either accepts or comes back with a counteroffer the second day. If they cannot
reach an agreement in two days, both players get zero. John (Paul) discounts payoffs
in the future at a rate of α (β) per day.

A subgame perfect equilibrium of this bargaining game can be derived using back-
ward induction.
1. On the second day, John would accept any non-negative counteroffer made by
Paul. Therefore, Paul would make proposal of getting the whole $ 1 himself and John
would get $ 0.
2. On the first day, John should make an offer such that Paul gets an amount equiv-
alent to getting $ 1 the second day, otherwise Paul will reject the offer. Therefore,
John will propose of 1− β for himself and β for Paul and Paul will accept the offer.
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An example of a subgame non-perfect Nash equilibrium is that John proposes of
getting 1-0.5β for himself and 0.5β for Paul and refuses to accept any counteroffer
made by Paul. In this equilibrium, Paul is threatened by John’s incredible threat and
accepts only one half of what he should have had in a perfect equilibrium.

10.12 2-person 0-sum game

1. B = −A so that aij + bij = 0.

2. Maxmin strategy: If player 1 plays si, then the minimum he will have is minj aij ,
called the security level of strategy si. A possible guideline for player 1 is to
choose a strategy such that the security level is maximized: Player 1 chooses
si∗ so that minj ai∗j ≥ minj aij for all i. Similarly, since bij = −aij , Player 2
chooses σj∗ so that maxi aij∗ ≤ maxi aij for all j.

3. Saddle point: If ai∗j∗ = maxi minj aij = minj maxi aij, then (si∗, σj∗) is called a
saddle point. If a saddle point exists, then it is a Nash equilibrium.

A1 =

(

2 1 4
−1 0 6

)

A2 =

(

1 0
0 1

)

In example A1, maxi minj aij = minj maxi aij = 1 (s1, σ2) is a saddle point and
hence a Nash equilibrium. In A2, maxi minj aij = 0 6= minj maxi aij = 1 and no
saddle point exists. If there is no saddle points, then there is no pure strategy
equilibrium.

4. Mixed strategy for player i: A probability distribution over Si. p = (p1, . . . , pm),
q = (q1, . . . , qn)′. (p, q) is a mixed strategy pair. Given (p, q), the expected
payoff of player 1 is pAq. A mixed strategy Nash equilibrium (p∗, q∗) is such
that p∗Aq∗ ≥ pAq∗ and p∗Aq∗ ≤ p∗Aq for all p and all q.

5. Security level of a mixed strategy: Given player 1’s strategy p, there is a pure
strategy of player 2 so that the expected payoff to player 1 is minimized, just
as in the case of a pure strategy of player 1.

t(p) ≡ min
j
{
∑

i

piai1, . . . ,
∑

i

piain}.

The problem of finding the maxmin mixed strategy (to find p∗ to maximize
t(p)) can be stated as

max
p

t subj. to
∑

i

piai1 ≥ t, . . . ,
∑

i

piain ≥ t,
∑

i

pi = 1.

6. Linear programming problem: The above problem can be transformed into a
linear programming problem as follows: (a) Add a positive constant to each
element of A to insure that t(p) > 0 for all p. (b) Define yi ≡ pi/t(p) and
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replace the problem of max t(p) with the problem of min 1/t(p) =
∑

i yi. The
constraints become

∑

i yiai1 ≥ 1, . . . ,
∑

i yiain ≥ 1.

min
y1,...,ym≥0

y1 + . . . + ym subj. to
∑

i

yiai1 ≥ 1, . . . ,
∑

i

yiain ≥ 1

7. Duality: It turns out that player 2’s minmax problem can be transformed sim-
ilarly and becomes the dual of player 1’s linear programming problem. The
existence of a mixed strategy Nash equilibrium is then proved by using the
duality theorem in linear programming.

Example (tossing coin game): A =

(

1 0
0 1

)

.

To find player 2’s equilibrium mixed strategy, we solve the linear programming prob-
lem:

max
x1,x2≥0

x1 + x2 subj. to x1 ≤ 1 x2 ≤ 1.

The solution is x1 = x2 = 1 and therefore the equilibrium strategy for player 2 is
q∗1 = q∗2 = 0.5.

-x1

6
x2

@
@

@
@

@
@

@
@

1

1 r
- y1

6
y2

@
@

@
@

@
@

@
@

1

1 r

Player 1’s equilibrium mixed strategy is obtained by solving the dual to the linear
programming problem:

min
y1,y2≥0

y1 + y2 subj. to y1 ≥ 1 y2 ≥ 1.

The solution is p∗1 = p∗2 = 0.5.

10.13 Mixed strategy equilibria for non-zero sum games

The idea of a mixed strategy equilibrium is also applicable to a non-zero sum game.
Similar to the simplex algorism for the 0-sum games, there is a Lemke algorism.

Example (Game of Chicken)
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�
�

�
Q

Q
Q
��
��
1

S N

�
�

@
@

�
�

@
@

�
 �	2
S N S N

(

0
0

)(

−3
3

)(

3
−3

)(

−9
−9

)

S1 = { S, N }, S2 = { S, N }.

II

I @
@

@

Swerve Don’t
Swerve (0,0) (-3,3)*
Don’t (3,-3)* (-9,-9)

There are two pure strategy NE: (S, N) and (N, S).
There is also a mixed strategy NE. Suppose player 2 plays a mixed strategy (q, 1−q).
If player 1 plays S, his expected payoff is Π1(S) = 0q + (−3)(1 − q). If he plays
N , his expected payoff is Π1(N) = 3q + (−9)(1 − q). For a mixed strategy NE,
Π1(S) = Π1(N), therefore, q = 2

3
.

The mixed strategy is symmetrical: (p∗1, p
∗
2) = (q∗1, q

∗
2) = (2

3
, 1

3
).

Example (Battle of sex Game)

�
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Q

Q
Q
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1

B O

�
�
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�

@
@
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B O B O

(

5
4

)(

0
0

) (

0
0

) (

4
5

)

S1 = { B, O }, S2 = { B, O }.

II

I @
@

@

Ball game Opera
Ball game (5,4)* (0,0)
Opera (0,0) (4,5)*

There are two pure strategy NE: (B, B) and (O, O).
There is also a mixed strategy NE. Suppose player 2 plays a mixed strategy (q, 1−q).
If player 1 plays B, his expected payoff is Π1(B) = 5q + (0)(1− q). If he plays O, his
expected payoff is Π1(O) = 0q+(4)(1−q). For a mixed strategy NE, Π1(B) = Π1(O),
therefore, q = 4

9
.

The mixed strategy is: (p∗1, p
∗
2) = (5

9
, 4

9
) and (q∗1 , q

∗
2) = (4

9
, 5

9
).

10.14 Cooperative Game and Characteristic form

2-person 0-sum games are strictly competitive. If player 1 gains $ 1, player 2 will loss
$ 1 and therefore no cooperation is possible. For other games, usually some coopera-
tion is possible. The concept of a Nash equilibrium is defined for the situation when
no explicit cooperation is allowed. In general, a Nash equilibrium is not efficient (not
Pareto optimal). When binding agreements on strategies chosen can be contracted
before the play of the game and transfers of payoffs among players after a play of the
game is possible, players will negotiate to coordinate their strategies and redistribute
the payoffs to achieve better results. In such a situation, the determination of strate-
gies is not the key issue. The problem becomes the formation of coalitions and the
distribution of payoffs.
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Characteristic form of a game:
The player set: N = {1, 2, . . . , n}.
A coalition is a subset of N : S ⊂ N .
A characteristic function v specifies the maximum total payoff of each coalition.
Consider the case of a 3-person game. There are 8 subsets of N = {1, 2, 3}, namely,
φ, (1), (2), (3), (12), (13), (23), (123).
Therefore, a characteristic form game is determined by 8 values v(φ), v(1), v(2), v(3), v(12), v(13), v(23
Super-additivity: If A ∩B = φ, then v(A ∪ B) ≥ v(A) + v(B).
An imputation is a payoff distribution (x1, x2, x3).
Individual rationality: xi ≥ v(i).
Group rationality:

∑

i∈S xi ≥ v(S).
Core C: the set of imputations that satisfy individual rationality and group rational-
ity for all S.

Marginal contribution of player i in a coalition S ∪ i: v(S ∪ i)− v(S)
Shapley value of player i is an weighted average of all marginal contributions

πi =
∑

S⊂N

|S|!(n− |S| − 1)!

n!
[v(S ∪ i)− v(S)].

Example: v(φ) = v(1) = v(2) = v(3) = 0, v(12) = v(13) = v(23) = 0.5, v(123) = 1.
C = {(x1, x2, x3), xi ≥ 0, xi + xj ≥ 0.5, x1 + x2 + x3 = 1}. Both (0.3, 0.3, 0.4) and
(0.2, 0.4, 0.4) are in C.
The Shapley values are (π1, π2, π3) = (1

3
, 1

3
, 1

3
).

Remark 1: The core of a game can be empty. However, the Shapley values are
uniquely determined.
Remark 2: Another related concept is the von-Neumann Morgenstern solution. See
CH 6 of Intriligator’s Mathematical Optimization and Economic Theory for the mo-
tivations of these concepts.

10.15 The Nash bargaining solution for a nontransferable 2-person coop-
erative game

In a nontransferable cooperative game, after-play redistributions of payoffs are im-
possible and therefore the concepts of core and Shapley values are not suitable. For
the case of 2-person games, the concept of Nash bargaining solutions are useful.
Let F ⊂ R2 be the feasible set of payoffs if the two players can reach an agreement
and Ti the payoff of player i if the negotiation breaks down. Ti is called the threat
point of player i. The Nash bargaining solution (x∗

1, x
∗
2) is defined to be the solution

to the following problem:
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-x1

6
x2

T1

T2

x∗
1

x∗
2

max
(x1,x2)∈F

(x1 − T1)(x2 − T2)

See CH 6 of Intriligator’s book for the motivations of the solution concept.

10.16 Problems

1. Consider the following two-person 0-sum game:
I \ II σ1 σ2 σ3

s1 4 3 -2
s2 3 4 10
s3 7 6 8

(a) Find the max min strategy of player I smaxmin and the min max strategy
of player II σmin max.

(b) Is the strategy pair (smaxmin, σmin max) a Nash equilibrium of the game?

(c) What are the equilibrium payoffs?

2. Find the maxmin strategy (smaxmin) and the minmax strategy (σmin max) of the
following two-person 0-sum game:

I \ II σ1 σ2

s1 -3 6
s2 8 -2
s3 6 3

Is the strategy pair (smaxmin, σmin max) a Nash equilibrium? If not, use simplex
method to find the mixed strategy Nash equilibrium.

3. Find the (mixed strategy) Nash Equilibrium of the following two-person game:
I \ II H T

H (-2, 2) (2, -1)
T (2, -2) (-1,2)

4. Suppose that two firms producing a homogenous product face a linear demand
curve P = a−bQ = a−b(q1+q2) and that both have the same constant marginal
costs c. For a given quantity pair (q1, q2), the profits are Πi = qi(P − c) =
qi(a − bq1 − bq2 − c), i = 1, 2. Find the Cournot Nash equilibrium output of
each firm.

5. Suppose that in a two-person cooperative game without side payments, if the
two players reach an agreement, they can get (Π1, Π2) such that Π2

1 + Π2 = 47
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and if no agreement is reached, player 1 will get T1 = 3 and player 2 will get
T2 = 2.

(a) Find the Nash solution of the game.

(b) Do the same for the case when side payments are possible. Also answer
how the side payments should be done?

6. A singer (player 1), a pianist (player 2), and a drummer (player 3) are offered
$ 1,000 to play together by a night club owner. The owner would alternatively
pay $ 800 the singer-piano duo, $ 650 the piano drums duo, and $ 300 the piano
alone. The night club is not interested in any other combination. Howeover,
the singer-drums duo makes $ 500 and the singer alone gets $ 200 a night in a
restaurant. The drums alone can make no profit.

(a) Write down the characteristic form of the cooperative game with side pay-
ments.

(b) Find the Shapley values of the game.

(c) Characterize the core.


