

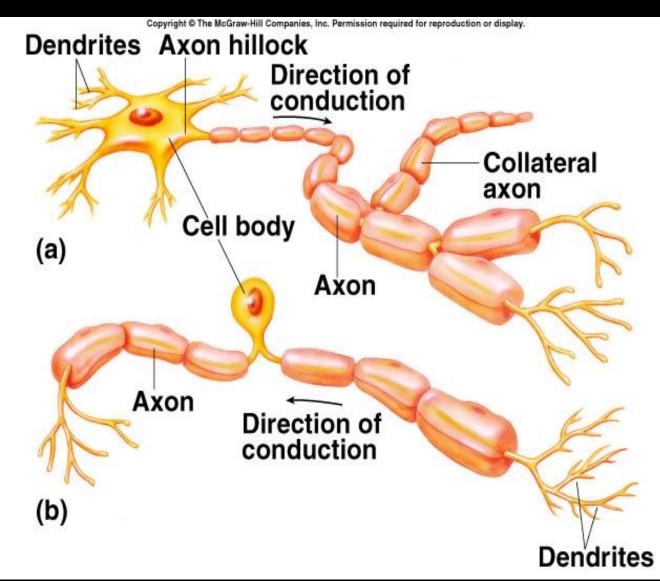
The Nervous System: Neurons and Synapses

www.cambodiamed.com

Nervous System

- 2 types of cells in the nervous system:
 - Neurons.
 - Supporting cells.
- Nervous system is divided into:
 - Central nervous system (CNS):
 - Brain.
 - Spinal cord.
 - Peripheral nervous system (PNS):
 - Cranial nerves.
 - Spinal nerves.

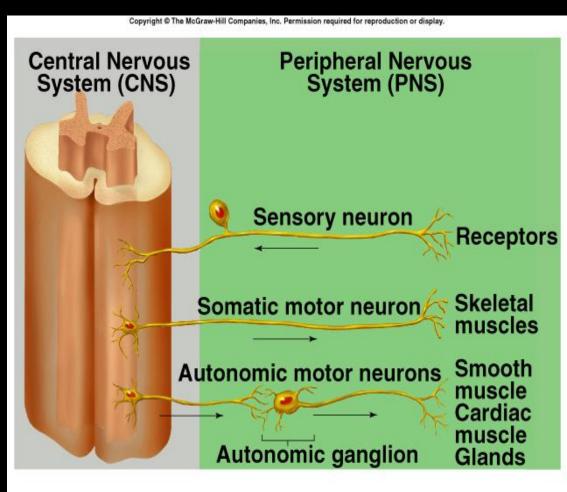
Neurons


- Basic structural and functional units of the nervous system.
 - Cannot divide by mitosis.
- Respond to physical and chemical stimuli.
- Produce and conduct electrochemical impulses.
- Release chemical regulators.
- Nerve:
 - Bundle of axons located outside CNS.
 - Most composed of both motor and sensory fibers.

Neurons (continued)

• Cell body (perikaryon):

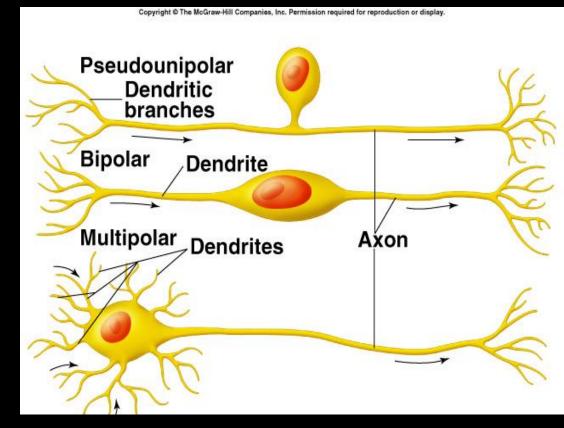
- "Nutrition center."
- Cell bodies within CNS clustered into nuclei, and in PNS in ganglia.
- Dendrites:
 - Provide receptive area.
 - Transmit electrical impulses to cell body.
- Axon:
 - Conducts impulses away from cell body.
 - Axoplasmic flow:
 - Proteins and other molecules are transported by rhythmic contractions to nerve endings.
 - Axonal transport:
 - Employs microtubules for transport.
 - May occur in orthograde or retrograde direction.


Neurons (continued)

Download from: www.agh

Functional Classification of Neurons

- Based upon direction impulses conducted.
- Sensory or afferent:
 - Conduct impulses from sensory receptors into CNS.
- Motor or efferent:
 - Conduct impulses out of CNS to effector organs.
- Association or interneurons:
 - Located entirely within the CNS.
 - Serve an integrative



www.cambodiamed.com

Structural Classification of Neurons

- Based on the # of processes that extend from cell body.
 - Pseudounipolar:
 - Short single process that branches like a T.
 - Sensory neurons.
 - Bipolar neurons:
 - Have 2 processes.
 - Retina of the eye.
 - Multipolar:
 - Have several dendrites and 1 axon.

Download from: www.aghalibi Motor neuron.

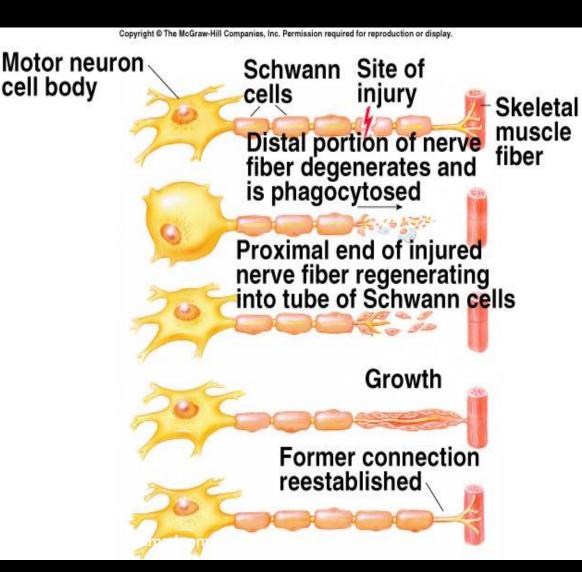
PN\$ Supporting Cell\$

- Schwaan cells:
 - Successive wrapping of the cell membrane.
 - Outer surface encased in glycoprotein basement membrane.
 - Provide insulation.
- Nodes of Ranvier:
 - Unmyelinated areas between adjacent Schwaan cells that produce nerve impulses.
- Satellite cells:
 - Support neuron cell bodies within ganglia.

CN\$ Supporting Cells

Oligodendrocytes:

ullet


- Process occurs mostly postnatally.
- Each has extensions that form myelin sheaths around several igodolaxons. McGraw-Hill Companies, Inc. Permission required for reproduction or display
 - Oligodendrocyte Insulation. Node of Ranvier Myelin sheath Axon

Nerve Regeneration

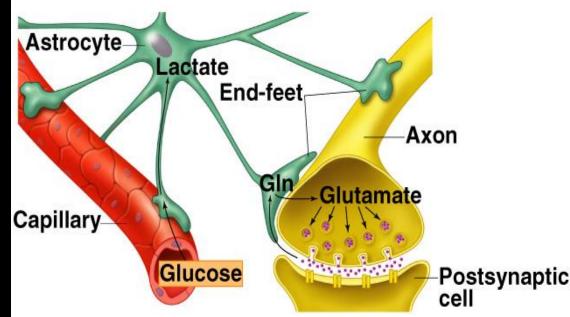
- Schwann cells:
 - Act as phagocytes, as the distal neuronal portion degenerates.
 - Surrounded by basement membrane, form regeneration tube:
 - Serve as guide for axon.
 - Send out chemicals that attract the growing axon.
 - Axon tip connected to cell body begins to grow towards destination.

Nerve Regeneration (continued)

- CNS has limited ability to regenerate:
 - Absence of continuous basement membrane.
 - Oligodendrocytes molecules inhibit neuronal growth.

Neurotrophins

- Promote neuron growth.
- Nerve growth factors include:
 - Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), neurotrophin-3, and neurotrophin-4/5.
- Fetus:
 - Embryonic development of sensory neurons and sympathetic ganglia (NGF and neurotrophin-3).


Neurotrophins (continued)

- Adult:
 - Maintenance of sympathetic ganglia (NGF).
 - Mature sensory neurons need for regeneration.
 - Required to maintain spinal neurons (GDNF).
 - Sustain neurons that use dopamine (GDNF).
- Myelin-associated inhibitory proteins:
 - Inhibit axon regeneration.

CN\$ Supporting Cell\$ (continued)

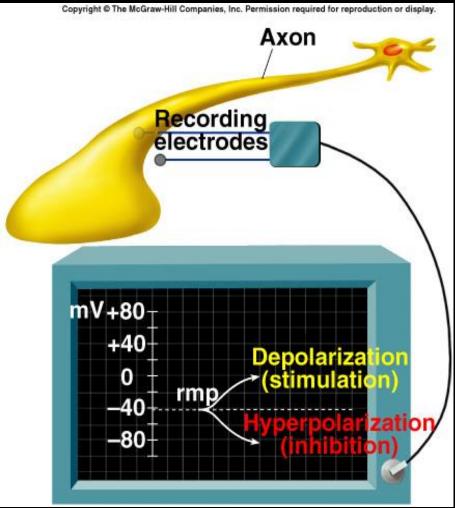
• Astrocytes:

- Most abundant glial cell.
- Vascular processes terminate in end-feet that surround the capillaries.
- Stimulate tight junctions, contributing to blood-brain barrier.
- Regulate external environment of K⁺ and pH.
- Take up K⁺ from ECF, NTs released from axons, and lactic acid (convert for ATP production).
 - Other extensions adjacent to synapses.

CNS Supporting Cells (continued)

- Microglia:
 - Phagocytes, migratory.
- Ependymal cells:
 - Secrete CSF.
 - Line ventricles.
 - Function as neural stem cells.
 - Can divide and progeny differentiate.

Blood-Brain Barrier

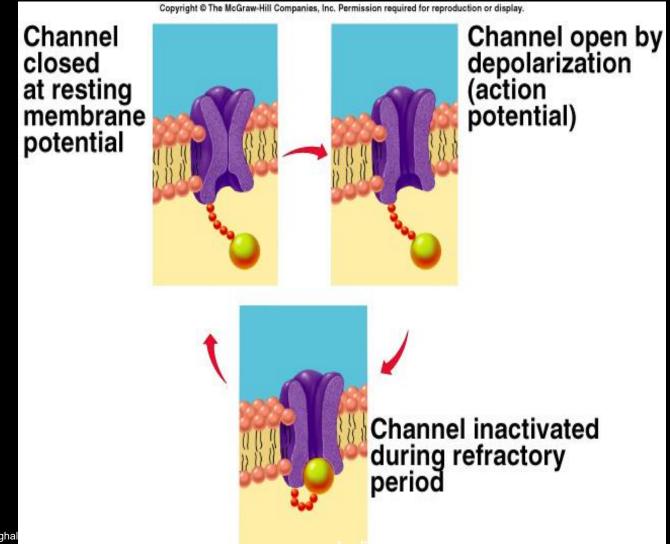

- Capillaries in brain do not have pores between adjacent endothelial cells.
 - Joined by tight junctions.
- Molecules within brain capillaries moved selectively through endothelial cells by:
 - Diffusion.
 - Active transport.
 - Endocytosis.
 - Exocytosis.

Electrical Activity of Axons

- All cells maintain a resting membrane potential (RMP):
 - Potential voltage difference across membrane.
 - Largely the result of negatively charged organic molecules within the cell.
 - Limited diffusion of positively charged inorganic ions.
 - Permeability of cell membrane:
 - Electrochemical gradients of Na⁺ and K^{+.}
 - Na⁺/K⁺ ATPase pump.
- Excitability/irritability:
 - Ability to produce and conduct electrical impulses.

Electrical Activity of Axons (continued)

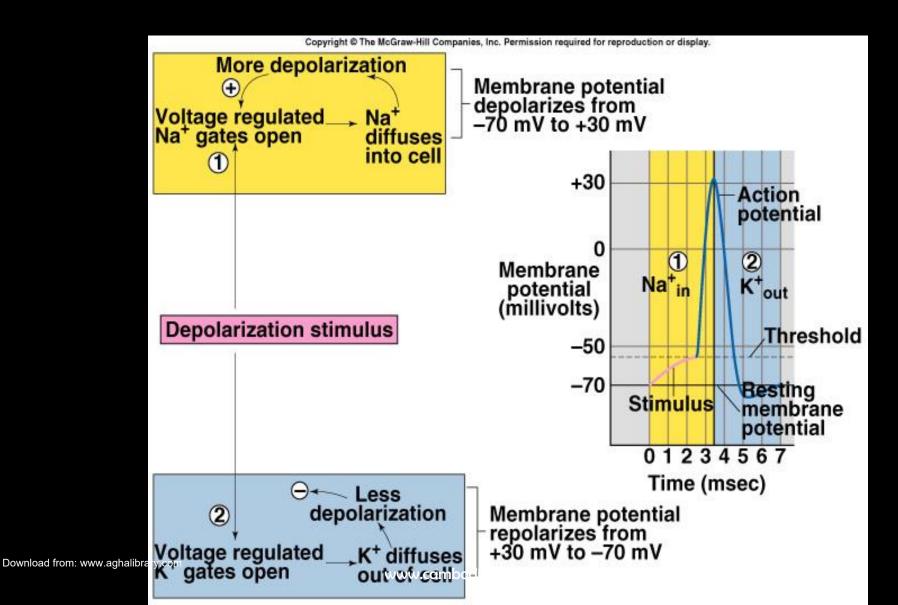
- Increase in membrane permeability for specific ion can be measured by placing 2 electrodes (1 inside and 1 outside the cell).
- Depolarization:
 - Potential difference reduced (become more positive).
- Repolarization:
 - Return to resting membrane potential (become more negative).
- Hyperpolarization:
 - More negative than RMP.



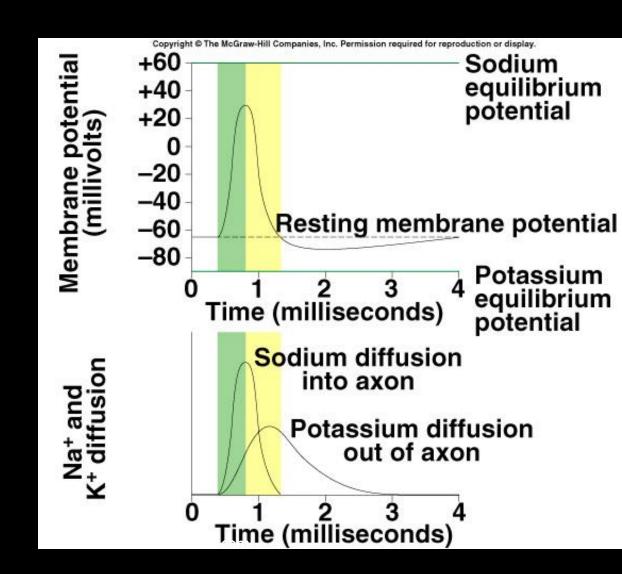
www.cambodiamed.com

Ion Gating in Axons

- Changes in membrane potential caused by ion flow through ion channels.
- Voltage gated (VG) channels open in response to change in membrane potential.
 - Gated channels are part of proteins that comprise the channel.
 - Can be open or closed in response to change.
 - 2 types of channels for K⁺:
 - 1 always open.
 - 1 closed in resting cell.
 - Channel for Na⁺:
 - Always closed in resting cells.
 - Some Na⁺ does leak into the cells.


Ion Gating in Axons (continued)

Action Potentials (APs)

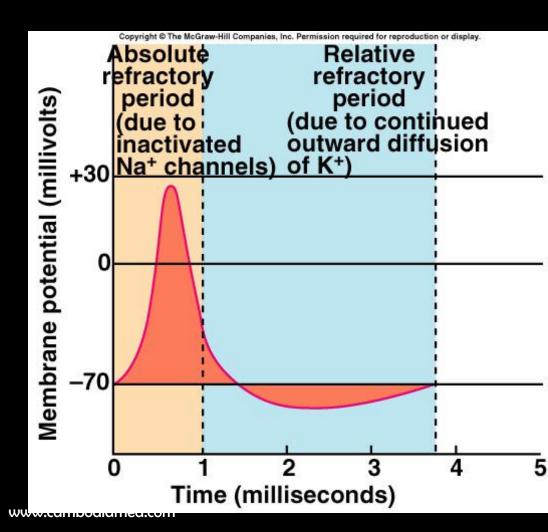

- Stimulus causes depolarization to threshold.
- VG Na⁺ channels open.
 - Electrochemical gradient inward.
 - + feedback loop.
 - Rapid reversal in membrane potential from -70 to + 30 mV.
 - VG Na⁺ channels become inactivated.
- VG K⁺ channels open.
 - Electrochemical gradient outward.
 - feedback loop.
 - Restore original RMP.

Action Potentials (APs) (continued)

Membrane Permeabilites

- AP is produced by an increase in Na⁺ permeability.
- After short delay, increase in K⁺ permeability.

Action Potentials (APs) (continued)

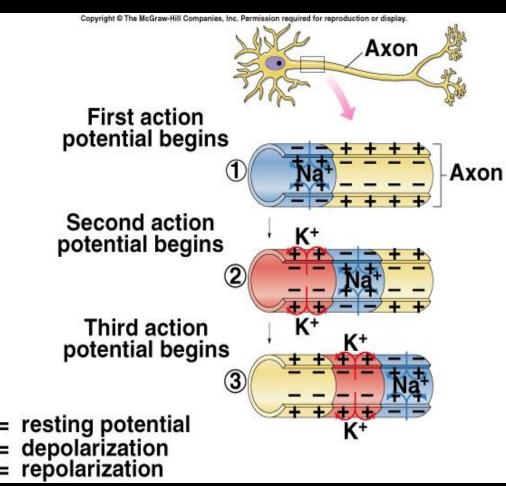

- Depolarization and repolarization occur via diffusion, do not require active transport.
 - Once AP completed, Na⁺/K⁺ ATPase pump extrudes Na⁺, and recovers K⁺.
- All or none:
 - When threshold reached, maximum potential change occurs.
 - Amplitude does not normally become more positive than + 30 mV because VG Na⁺ channels close quickly and VG K⁺ channels open.
 - Duration is the same, only open for a fixed period of time.
- Coding for Stimulus Intensity:
 - Increased frequency of AP indicates greater stimulus strength.

• Recruitment:

Stronger stimuli can activate more axons with a higher threshold.

Refractory Periods

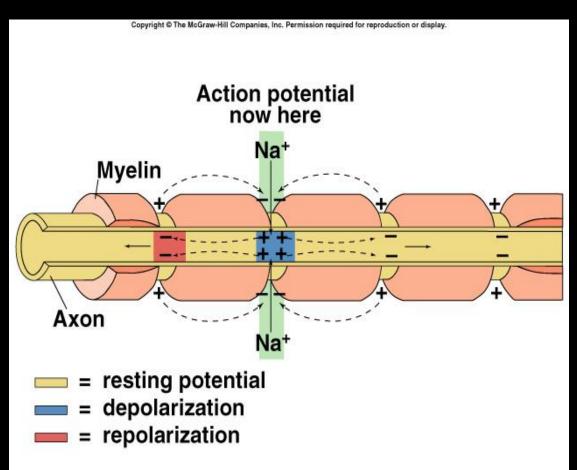
- Absolute refractory period:
 - Axon membrane is incapable of producing another AP.
- Relative refractory period:
 - VG ion channel shape alters at the molecular level.
 - VG K⁺ channels are open.
 - Axon membrane can produce another action potential, but requires stronger stimulus.



Cable Properties of Neurons

- Ability of neuron to transmit charge through cytoplasm.
- Axon cable properties are poor:
 - High internal resistance.
 - Many charges leak out of the axon through membrane.
- An AP does not travel down the entire axon.
- Each AP is a stimulus to produce another AP in the next region of membrane with VG channels.

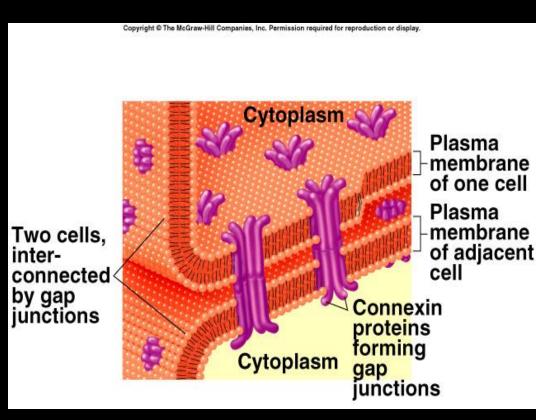
Conduction in an Unmyelinated Axon


- Cable spread of depolarization with influx of Na⁺ depolarizes the adjacent region membrane, propagating the AP.
- Conduction rate is slow.
 - AP must be produced at every fraction of micrometer.
- Occurs in 1 direction; previous region is in its refractory period.

www.cambodiamed.com

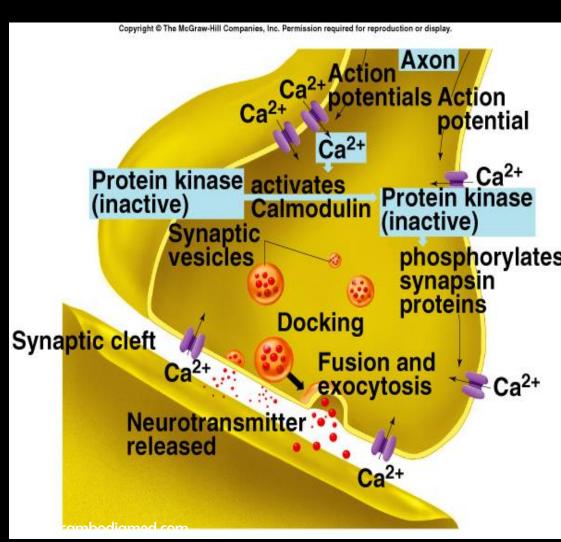
Conduction in Myelinated Axon

- Myelin prevents movement of Na⁺ and K⁺ through the membrane.
- Interruption in myelin (Nodes of Ranvier) contain VG Na⁺ and K⁺ channels.
- AP occurs only at the nodes.
 - AP at 1 node depolarizes membrane to reach threshold at next node.
- Saltatory conduction (leaps).
 - Fast rate of conduction.



- Functional connection between a neuron and another neuron or effector cell.
- Transmission in one direction only.
- Axon of first (presynaptic) to second (postsynaptic) neuron.
- Synaptic transmission is through a chemical gated channel.
- Presynaptic terminal (bouton) releases a neurotransmitter (NT).

Electrical Synapse

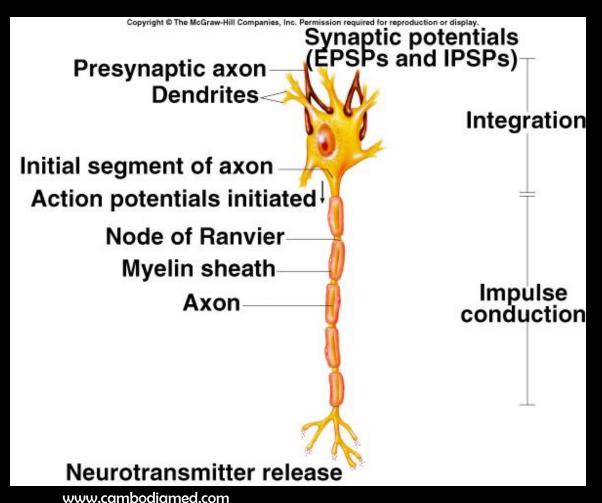

- Impulses can be regenerated without interruption in adjacent cells.
- Gap junctions:
 - Adjacent cells electrically coupled through a channel.
 - Each gap junction is composed of 12 connexin proteins.
- Examples:
 - Smooth and cardiac muscles, brain, and glial

Download from: www.aghalibrary.com

Chemical Synapse

- Terminal bouton is separated from postsynaptic cell by synaptic cleft.
- NTs are released from synaptic vesicles.
- Vesicles fuse with axon membrane and NT released by exocytosis.
- Amount of NTs released depends upon frequency of AP.

Synaptic Transmission

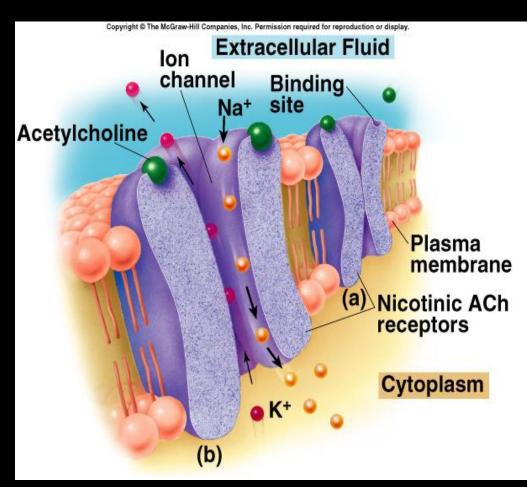

- NT release is rapid because many vesicles form fusion-complexes at "docking site."
- AP travels down axon to bouton.
- VG Ca²⁺ channels open.
 - Ca²⁺ enters bouton down concentration gradient.
 - Inward diffusion triggers rapid fusion of synaptic vesicles and release of NTs.
- Ca²⁺ activates calmodulin, which activates protein kinase.
- Protein kinase phosphorylates synapsins.
 - Synapsins aid in the fusion of synaptic vesicles.

Synaptic Transmission (continued)

- NTs are released and diffuse across synaptic cleft.
- NT (ligand) binds to specific receptor proteins in postsynaptic cell membrane.
- Chemically-regulated gated ion channels open.
 - EPSP: depolarization.
 - IPSP: hyperpolarization.
- Neurotransmitter inactivated to end transmission.

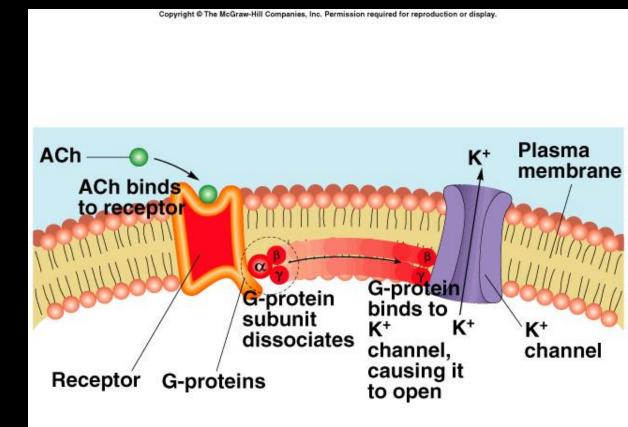
Chemical Synapses

- EPSP (excitatory postsynaptic potential):
 - Depolarization.
- IPSP (inhibitory postsynaptic potential):
 - Hyperpolarization

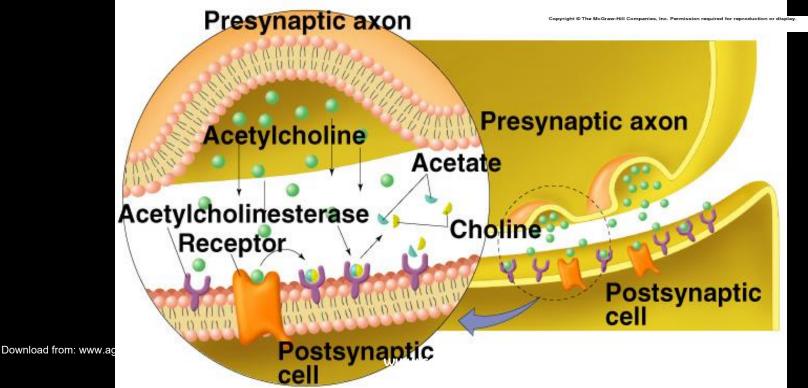


Acetylcholine (ACh) as NT

- ACh is both an excitatory and inhibitory NT, depending on organ involved.
 - Causes the opening of chemical gated ion channels.
- Nicotinic ACh receptors:
 - Found in autonomic ganglia and skeletal muscle fibers.
- Muscarinic ACh receptors:
 - Found in the plasma membrane of smooth and cardiac muscle cells, and in cells of particular glands.


Ligand-Operated ACh Channels

- Most direct mechanism.
- Ion channel runs through receptor.
 - Receptor has 5 polypeptide subunits that enclose ion channel.
 - 2 subunits contain ACh binding sites.
- Channel opens when both sites bind to ACh.
 - Permits diffusion of Na⁺ into and K⁺ out of postsynaptic cell.
- Inward flow of Na⁺ dominates.
 - Produces EPSPs.


G Protein-Operated ACh Channel

- Only 1 subunit.
- Ion channels are separate proteins located away from the receptors.
- Binding of ACh activates alpha G-protein subunit.
- Alpha subunit dissociates.
- Alpha subunit or the betagamma complex diffuses through membrane until it binds to ion channel, opening it.

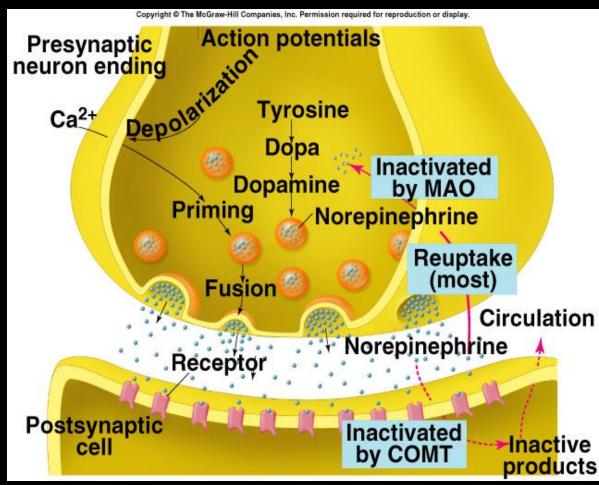
Acetylcholinesterase (AChE)

- Enzyme that inactivates ACh.
 - Present on postsynaptic membrane or immediately outside the membrane.
- Prevents continued stimulation.

ACh in CNS

- Cholinergic neurons:
 - Use ACh as NT.
 - Axon bouton synapses with dendrites or cell body of another neuron.
- First VG channels are located at axon hillock.
- EPSPs spread by cable properties to initial segment of axon.
- Gradations in strength of EPSPs above threshold determine frequency of APs produced at axon hillock.

ACh in PN\$


- Somatic motor neurons synapse with skeletal muscle fibers.
 - Release ACh from boutons.
 - Produces end-plate potential (EPSPs).
- Depolarization opens VG channels adjacent to end plate.

Monoamines as NT

- Monoamine NTs:
 - Epinephrine.
 - Norepinephrine.
 - Serotonin.
 - Dopamine.
- Released by exocytosis from presynaptic vesicles.
- Diffuse across the synaptic cleft.
- Interact with specific receptors in postsynaptic membrane.

Inhibition of Monoamines as NT

- Reuptake of monoamines into presynaptic membrane.
 - Enzymatic degradation of monoamines in presynaptic membrane by MAO.
- Enzymatic degradation of catecholamines in postsynaptic membrane by COMT.

Mechanism of Action

- Monoamine NT do not directly open ion channels.
- Act through second messenger, such as cAMP.
- Binding of norepinephrine stimulates dissociation of Gprotein alpha subunit.
- Alpha subunit binds to adenylate cyclase, converting ATP to cAMP.
- cAMP activates protein kinase, phosphorylating other proteins.
- Open ion channels.

www.cambodiamed.com

Serotonin as NT

- NT (derived from L-tryptophan) for neurons with cell bodies in raphe nuclei.
- Regulation of mood, behavior, appetite, and cerebral circulation.
- SSRIs (serotonin-specific reuptake inhibitors):
 - Inhibit reuptake and destruction of serotonin, prolonging the action of NT.
 - Used as an antidepressant.
 - Reduces appetite, treatment for anxiety, treatment for migraine headaches.

Dopamine an NT

- NT for neurons with cell bodies in midbrain.
- Axons project into:
 - Nigrostriatal dopamine system:
 - Nuerons in substantia nigra send fibers to corpus straitum.
 - Initiation of skeletal muscle movement.
 - Parkinson's disease: degeneration of neurons in substantia nigra.
 - Mesolimbic dopamine system:
 - Neurons originate in midbrain, send axons to limbic system.
 - Involved in behavior and reward.
 - Addictive drugs:
 - Promote activity in nucleus accumbens.

Norepinephrine (NE) as NT

- NT in both PNS and CNS.
- PNS:
 - Smooth muscles, cardiac muscle and glands.
 - Increase in blood pressure, constriction of arteries.
- CNS:
 - General behavior.

Amino Acids as NT

- Glutamic acid and aspartic acid:
 - Major excitatory NTs in CNS.
- Glutamic acid:
 - NMDA receptor involved in memory storage.
- Glycine:
 - Inhibitory, produces IPSPs.
 - Opening of Cl⁻ channels in postsynaptic membrane.
 - Hyperpolarization.
 - Helps control skeletal movements.
- GABA (gamma-aminobutyric acid):
 - Most prevalent NT in brain.
 - Inhibitory, produces IPSPs.
 - Hyperpolarizes postsynaptic membrane.
 - Motor functions in cerebellum.

Polypeptides as NT

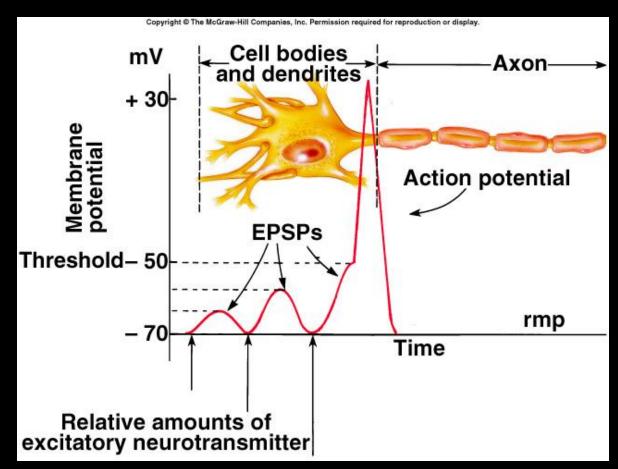
- CCK:
 - Promote satiety following meals.
- Substance P:
 - Major NT in sensations of pain.
- Synaptic plasticity (neuromodulating effects):
 - Neurons can release classical NT or the polypeptide NT.

Polypeptides as NT

• Endogenous opiods:

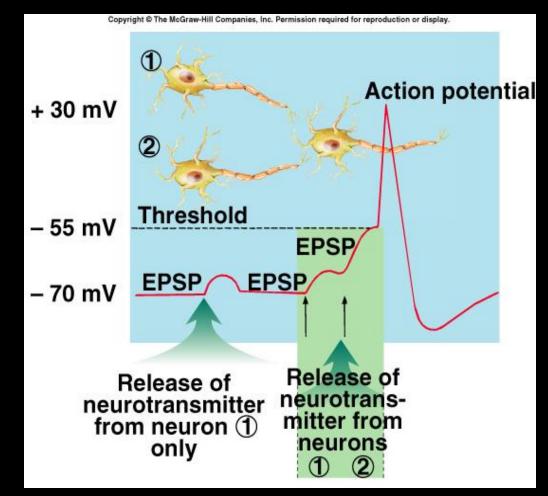
- Brain produces its own analgesic endogenous morphine-like compounds, blocking the release of substance P.
- Beta-endorphin, enkephalins, dynorphin.
- Neuropeptide Y:
 - Most abundant neuropeptide in brain.
 - Inhibits glutamate in hippocampus.
 - Powerful stimulator of appetite.

• NO:


- Exerts its effects by stimulation of cGMP.
- Macrophages release NO to helps kill bacteria.
- Involved in memory and learning.
- Smooth muscle relaxation.

Endogenous Cannabinoids, Carbon Monoxide

- Endocannabinoids:
 - Bind to the same receptor as THC.
 - Act as analgesics.
 - Function as retrograde NT.
- Carbon monoxide:
 - Stimulate production of cGMP within neurons.
 - Promotes odor adaptation in olfactory neurons.
 - May be involved in neuroendocrine regulation in hypothalamus.

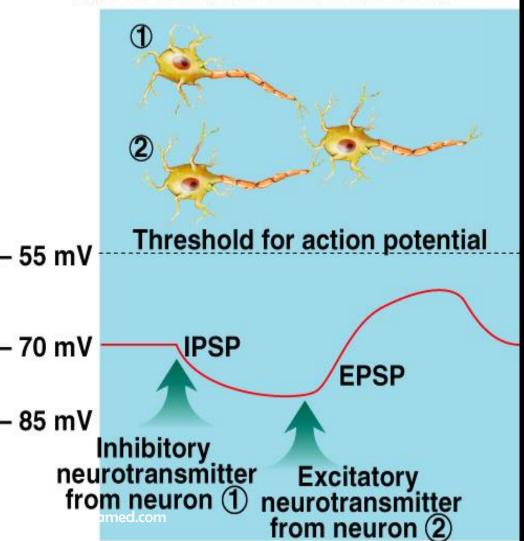


- No threshold.
- Decreases resting membrane potential.
 - Closer to threshold.
- Graded in magnitude.
- Have no refractory period.
- Can summate.

Synaptic Integration

- EPSPs can summate, producing AP.
 - Spatial summation:
 - Numerous boutons converge on a single postsynaptic neuron (distance).
 - Temporal summation:
 - Successive waves of neurotransmitter release (time).

Long-Term Potentiation


- May favor transmission along frequently used neural pathways.
- Neuron is stimulated at high frequency, enhancing excitability of synapse.
 - Improves efficacy of synaptic transmission.
- Neural pathways in hippocampus use glutamate, which activates NMDA receptors.
 - Involved in memory and learning.

Synaptic Inhibition

- Presynaptic inhibition:
 - Amount of excitatory NT released is decreased by effects of second neuron, whose axon makes synapses with first neuron's axon.
- Postsynaptic inhibition
- (IPSPs):
 - No threshold.
 - Hyperpolarize postsynaptic membrane.
 - Increase membrane potential.
 - Can summate.
 - No refractory period.

Download from: www.aghalibrary.com

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Improve Medical Slides Please suggest a feedback message to our official page: <u>The Best Doctors</u>

www.cambodiamed.com

Don't remove our credit for this hard working

Our Respects!

Cambodian MED Teams

Download from: www.aghalibrary.com